Evaluation of Performance Based Concrete for Bridge Decks

WA-RD 845.1

Eric Ferluga
Patrick Glassford

जิ
Department of Transportation

EVALUATION OF PERFORMANCE BASED CONCRETE FOR BRIDGE DECKS

Prepared by:
Eric Ferluga, P.E.
Patrick Glassford, P.E.
WSDOT Bridge and Structures Office
PO Box 47340
Olympia, WA 98504
June 26, 2015

TECHNICAL REPORT STANDARD TITLE PAGE

1. REPORT NO.$\text { WA-RD } 845.1$	2. GOVERNMENT ACCESSION NO.	3. Recipients catalog no
4. TITLE AND SUBTILLE EVALUATION OF PERFORMANCE BASED CONCRETE FOR BRIDGE DECKS		5. REPORT DATE
		June 30, 2015
		6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S) Eric Ferluga and Patrick Glassford		8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS Washington State Department of Transportation Bridge and Structures Office 7345 Linderson Way SW Tumwater, WA 98501		10. WORK UNIT NO.
		11. CONTRACT OR GRANT NO.
12. SPONSORING AGENCY NAME AND ADDRESS		13. TYPE OF REPORT AND PERIOD COVERED
		14. SPONSORING AGENCY CODE
15. SUPPLEMENTARY NOTES This study was conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration.		
16. ABSTRACT The Washington State Department of Transportation (WSDOT) revised the concrete specification for bridge decks in 2011 to be more performance based with the desired effect of having less early-age shrinkage cracking. This report evaluates a sample of the bridges constructed with the revised performance based specification against a sample of bridges constructed with the traditional WSDOT specification. The evaluation consists of visual inspections, noting cracks and developing crack intensity diagrams for each bridge. These diagrams are then used to rank and compare the bridge decks. The outcome of this study is that the bridge decks constructed with the performance based specification have much less early-age shrinkage cracking then the traditional WSDOT specification.		

17. KEY wORDS Bridges, Decks, Cracking, Shrinkage reducing admixture, Performance based	18. DISTRIBUTION STATEMENT		
19. SECURITY CLASSIF. (of this report) None	20. SECURITY CLASSIF. (of this page) None	21. NO. OF PAGES	22. PRICE

Disclaimer

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Washington State Department of Transportation. This report does not constitute a standard, specification, or regulation.
EXECUTIVE SUMMARY 2
OVERVIEW 3
DECK CONCRETE SPECIFICATION 4
Contractor Mix Design 4
Concrete Placement, Texturing and Curing5
Bridge Deck Temperature 8
BRIDGE DECK EVALUATION METHOD. 9
BRIDGES FOR EVALUATION 11
South Trip 12
West Trip 13
East Trip 14
North Trip 15
BRIDGE DECK SUMMARIES 16
Single Span Prestressed Girder Bridges 16
Two-Span Prestressed Girder Bridges 22
Multi-Span Prestressed Girder Bridges 29
Multi-Span Steel Plate Girder Bridges 39
BRIDGE DECK EVALUATION SUMMARY 44
DECK CONCRETE SPECIFICATION EVALUATION 45
Shrinkage Reducing Ad-Mixture 45
Test Report for Shrinkage 45
Temperature MONITORING 47
RECOMMENDATIONS 48

APPENDICES

Appendix A - Single Span Prestressed Girder Bridges
Appendix B - Two-Span Prestressed Girder Bridges
Appendix C - Multi-Span Prestressed Girder Bridges
Appendix D - Multi-Span Steel Plate Girder Bridges

ACKNOWLEDGEMENT

The changes to the Standard Specifications which became "Performance Based Concrete for Bridge Decks" were accomplished in great part due to the vision and tireless efforts of Mohammad Sheikhizadeh, Mark Gaines, and support from the Washington Aggregates and Concrete Association (WACA).

EXECUTIVE SUMMARY

This report documents the effectiveness of the changes made to the Washington State Department of Transportation (WSDOT) concrete specifications for bridge decks. The bridge deck concrete specifications were revised to eliminate or reduce early-age restraint cracking in bridge decks. Restraint cracking is caused by length changes due to shrinkage or temperature effects that are restrained by girders and internal reinforcement and show up primarily as transverse through cracks. Many of the revisions came from recommendations from the WA-RD Report 747.1 "Mitigation Strategies for Early-Age Shrinkage Cracking in Bridge Decks." Bridge decks constructed with this revised concrete specification are commonly referred to as "Performance Based Bridge Decks."

The undersides of 28 bridge decks were visually inspected for cracks; 15 were constructed using the performance based specification, and 13 were constructed using the traditional WSDOT specification. The information gathered is converted into "crack intensity" diagrams. These diagrams illustrate the severity and location of cracking for each bridge deck.

In general, the performance based concrete specification resulted in fewer visible cracks in bridge decks than the traditional concrete specification. A few of the traditional bridge decks performed similar to the performance based bridge decks, but this appears to be the exception, not the rule. Only one of the performance based concrete decks had a high intensity of cracking. It is unclear what contributed to the poor performance of this particular bridge deck.

What is apparent from this study is that cracking of bridge decks is variable within the same bridge. In some cases, it appears to be variable within the same concrete placement. This indicates that there are many variables that affect the cracking performance of a bridge deck that change during the construction of the bridge.

A secondary objective of this study was to identify trends or issues with the current performance based specification that could be improved. Mix design, test data and temperature information was gathered for the performance based bridge decks evaluated in this study. No correlation could be made between this data and crack intensity; however, improvements in data collection on future projects may provide better data to identify trends or issues.

Ultimately, based on this study, no significant changes to the bridge deck concrete specifications are necessary. Some minor changes related to quality of data submitted by Contractors may be beneficial to identify possible improvements in performance limits identified in the specification.

OVERVIEW

The objective of this report is to evaluate and document the effectiveness of the changes made to the Washington State Department of Transportation (WSDOT) concrete specification for bridge decks. The WSDOT revamped the bridge deck concrete specifications in an effort to eliminate or reduce early-age restraint cracking in bridge decks. Restraint cracking is caused by length changes due to shrinkage or temperature effects that are restrained by girders and internal reinforcement and show up primarily as transverse through cracks. Many of the revisions came from recommendations from the WA-RD Report 747.1 "Mitigation Strategies for Early-Age Shrinkage Cracking in Bridge Decks." Bridge decks constructed with this revised concrete specification are commonly referred to as "Performance Based Bridge Decks."

The term "Performance Based" is used because the revised specification removes prescribed requirements (minimum cement content, use of fly ash, etc.) and adds performance criteria such as shrinkage and permeability limits. Contractors are required to submit test results to prove their concrete mix design meets the specified performance requirements.

The performance based specification was first implemented in mid-2011. Since then, $30+$ bridges have been constructed using project specific specifications as well as a handful of bridge deck replacements. The performance based specification is now included in the WSDOT 2014 Standard Specifications (as amended April 6, 2015).

To evaluate the effectiveness of the revised concrete specification, a sample of bridges recently constructed with the performance based specification and the traditional specification have been visually inspected for cracks. This inspection data has been used to judge the severity or intensity of cracking for each bridge deck. The cracking severity is used to compare the bridges and can be used to draw conclusions on the effectiveness of the revised specification to prevent or reduce early-age restraint cracking in the bridge decks.

A secondary objective is to identify any improvements that could be made to the current performance based specification. To facilitate this, the concrete mix design, test results and temperature data submitted by Contractors is collected. This data is then used to identify possible trends that correlate to the cracking performance of the bridge decks.

DECK CONCRETE SPECIFICATION

In April of 2010 WA-RD Report 747.1 "Mitigation for Early-Age Shrinkage Cracking in Bridge Decks" was published and was used to revise the WSDOT specification for bridge deck concrete which is classified as Class 4000D. The 2014 WSDOT Standard Specifications includes revisions to the following sections:

- 6-02.3(2)A - Contractor Mix Design
- 6-02.3(10)D - Concrete Placement, Finishing, and Texturing [for Bridge Decks]
- 6-02.3(11) - Curing Concrete

CONTRACTOR MIX DESIGN

The revisions to the "Contractor Mix Design" remove some of the prescriptive requirements and replace them with performance based requirements. The most significant prescriptive requirement that was removed was the requirement for a minimum cementitious content for the Class 4000D concrete. The previous specification contained a requirement that the 4000 D concrete was to contain a minimum of 660 lbs of cement and 75 lbs of fly ash (for a total of 735 lb cementitious material). The revised specification no longer has a minimum cementitious content and does not require the use of fly ash.

The performance based requirement for minimum concrete compressive strength at 28 days remains in the specification as $4,000 \mathrm{psi}$. Added were performance limits on permeability, length change ("shrinkage") and scaling (as well as an optional requirement for freeze-thaw durability to reduce prescribed air content). In addition to the performance limits, modulus of elasticity and density are required to be provided (but no limits attached).

Another significant change resulting from recommendations of WA-RD Report 747.1 was to increase the aggregate size. The nominal maximum aggregate size increased from $1^{\prime \prime}$ to $1 \frac{1}{2 \prime \prime}$. Note that the nominal maximum aggregate size changed from $3 / 4$ " in the 2008 WSDOT Standard Specifications to $1^{\prime \prime}$ in the 2010 WSDOT Standard Specifications.

See Table 1 for a summary of the revisions to the Class 4000D specification.

Table 1 - Summary of 4000D Concrete Specifications

	Original Class 4000D	Revised Class 4000D
Minimum 28-day Compressive Strength	4,000 psi	4,000 psi
Cement	Type I or II Portland	Type I or II Portland
Cementitious Content	735 lbs minimum (660 lbs cement \& 75 lbs fly ash)	No set limits
Fly Ash	Required	Optional
Nominal Max. Aggregate Size	1-inch	1112-inch
Water Reducing Admixture	Required	Optional
Air Content	4.5\% to 7.5\%	4.5\% to 7.5\%
Freeze-Thaw Durability Test (instead of above air content requirement)	Not an Option	3.0% min. air content 90% minimum durability factor after 300 cycles per AASHTO T 161
Permeability	No Requirement	Less than 2000 coulombs at 56 days per AASHTO T 277
Length Change ("shrinkage")	No Requirement	Less than 0.032\% (320 microstrain) at 28 days per AASHTO T 160
Scaling	No Requirement	Visual rating ≤ 2 after 50 cycles per ASTM C 672
Modulus of Elasticity	No Requirement	Measured and Submitted per ASTM C 469
Density	No Requirement	Measured and Submitted per ASTM C 138

The overall intent of the changes to the Class 4000D mix design is to focus on the behavior (or performance) of the concrete rather than providing a set "recipe." This puts more burdens on the Contractor and concrete supplier but allows for more flexibility and provides more information on the actual properties of the concrete being placed.

CONCRETE PLACEMENT, TEXTURING AND CURING

In addition to revisions to the mix design, changes were made to the placement, finishing and texturing portions of the specification. The ultimate goal of these revisions is to begin adequate wet curing as soon as possible. The original specifications for placing and texturing typically resulted in a delay of application of wet burlap to the surface of the bridge deck. This delay occurred because the texturing was done by tining transverse grooves with a metal comb and could not occur until the concrete was sufficiently stiff. After the bridge deck was tined, curing compound was applied. When the deck had taken initial set, the presoaked burlap and soaker hoses were applied and kept in place for 14 consecutive days.

Revisions to the curing portion of the specification require fogging of the deck immediately after the finishing machine passes "maintaining a wet sheen without developing pooling or sheeting water" (see Figure 1). Tining of the bridge deck is eliminated and presoaked burlap is applied almost immediately "without damaging the finish, other than minor marring of the concrete surface" (see Figure 2). The use of curing compound is explicitly forbidden. Fogging shall continue until the concrete has achieved initial set when soaker hoses are added (See Figure 3). The wet burlap and soaker hoses remain in place for 14 consecutive days.

Figure 1 - Fogging of Bridge Deck

Figure 2-Application of Presoaked Burlap

Figure 3 - Burlap and Soaker Hoses

Since the bridge deck is not textured before the wet burlap is applied (see Figure 4), it has to occur after the concrete has hardened. This is achieved through the use of "diamond tipped saw blades mounted on a power driven, self-propelled machine that is designed to texture concrete surfaces" (see Figure 5). The revised specification results in a bridge deck that has longitudinal grooves instead of transverse grooves provided by a metal comb (see Figure 6).

Figure 4 - Bridge Deck Surface after Curing

Figure 5 - Bridge Deck Texturing Machine

Figure 6 - Finished Bridge Deck Texture

BRIDGE DECK TEMPERATURE

Another change to the Class 4000D specification requires the concrete temperature at the time of placement to be between $55^{\circ} \mathrm{F}$ and $75^{\circ} \mathrm{F}$. The original specification limited concrete placement temperature between $55^{\circ} \mathrm{F}$ and $90^{\circ} \mathrm{F}$. The goal of this revision is to reduce the peak temperature of the concrete during placement and curing. Concrete typically heats up as it sets and hardens (see Figure 7). If concrete temperature is much higher than ambient temperature when it achieves initial set, stresses will be locked in which could cause cracking.

Figure 7 - Example of Concrete Temperature Rise (from "SR 520 - ACME Project Final Findings Report")

Additionally, requirements were added to monitor the temperature of the bridge deck concrete for 7-days after concrete placement. This is done by embedding temperature monitoring devices in the bridge deck and recording temperatures hourly. Ambient temperature is also recorded from monitoring devises placed near the locations of the monitors embedded in the concrete. The Contractor is then required to submit this data to WSDOT; however, no other contractual limits are placed on this information.

BRIDGE DECK EVALUATION METHOD

The main issue that drove the revisions to the Class 4000D bridge deck concrete specifications is the presence of highly visible cracks on the roadway surface and the underside of bridge decks between girder flanges and in the overhangs. Therefore, "cracking severity" is used as the measure of success for bridge deck concrete.

Cracks on the underside of bridge decks are generally easier to see than those on the top (primarily due to effloresce or "leaching" seen). Cracks on the top of bridge decks can be easily seen after a rain when the deck is drying out. However, this would require careful timing of inspections as well as traffic control. To quickly and easily evaluate deck cracking, visible cracks in the underside of decks between the girders are used to evaluate deck cracking. Cracking in the underside of the overhangs or top of deck are not quantified for this evaluation

To quantify the severity of deck cracking, easily visible cracks are counted on the underside of the deck and converted to "crack intensity" percentage. 100\% crack intensity is set as transverse cracks spaced at an average of 2-feet on center. Each bridge is divided up into "bays" which are bounded by girders and diaphragms (or crossframes for the steel bridges), see Figure 8. The number of cracks for 100% crack intensity is equal to the length of the bay divided by 2 -feet. A crack intensity for each bay is calculated by dividing the number of cracks counted (N_{CR}) by the number of cracks for 100% crack intensity (N_{100}). An example of the resulting Crack Intensity Diagram is shown in Figure 9.

Figure 8 - Example of a "Bay"

Figure 9 - Crack Intensity Diagram Example

In reality, the cracking in a "bay" is not always uniformly spaced. Sometimes a few cracks are closely spaced, but concentrated in a small portion of the "bay" (see Figure 10). Other times they are more uniformly spaced throughout (see Figure 11). This information is lost in the above diagrams as this evaluation method assumes the cracks are uniformly distributed along the length of the "bay."

Figure 10 - Non-uniform Spaced Cracks

Figure 11 - Uniformly Spaced Cracks

BRIDGES FOR EVALUATION

The criteria for the bridges chosen for this study were:

- Constructed in 2008 or later
- Visibility of the underside of deck
- Relatively easy access
- Relatively simple geometry

A total of 28 bridges were inspected and evaluated; 15 were constructed using the performance based specification and 13 were constructed using the traditional WSDOT specification. Throughout this report the bridges are color coded; red is used for "Traditional" bridge decks, and green is used for "Performance Based" bridge decks.

Prestressed I-girders and steel plate l-girders were selected for the ability to inspect the underside of the decks between girders. Deck bulb-T girders appear to be more common in recent years, and several have been constructed with a performance based topping slab, but these were not included because the underside of the decks are not visible.

The bridges where sorted into four "trips" to different geographical regions which are described in the following sections.

SOUTH TRIP

The bridges included in this trip are in the Centralia area primarily along $\mathrm{I}-5$, as shown in Figure 12. The inspection of these bridges was performed on 4/8/2015.

Br. No.	Bridge Name	Str. ID	Contract	Region	Contractor	Year	Perform.
5/302E	PRAIRIE CREEK NB	0017465 A	7465	OR	Scarsella Bros.	2009	No
5/302W	PRAIRIE CREEK SB	$0017465 B$	7465	OR	Scarsella Bros.	2010	No
5/229	MELLEN STREET COUPLET	$0018473 B$	8473	SW	Scarsella Bros.	2014	Yes
5/234W	I-5 OVER BLAKESLEE JCT RR	0018272 C	8272	SW	Cascade Bridge	2013	Yes
5/232SCD	SKOOKUMCHUCK RIVER SCD	$0018272 B$	8272	SW	Cascade Bridge	2013	Yes
5/232NCD	SKOOKUMCHUCK RIVER NCD	$0018272 A$	8272	SW	Cascade Bridge	2013	Yes
6/115	S FORK CHEHALIS R	$0017587 A$	7587	SW	Scarsella Bros.	2009	No

Figure 12 - Map of South Trip Bridges

The bridges included in this trip are in the Willapa Bay area near the coast, as shown in Figure 13. The inspection of these bridges was performed on 5/7/2015.

Figure 13 - Map of West Trip Bridges

EAST TRIP

The bridges included in this trip are near the Keechelus Lake and Spokane areas along l-90, as shown in Figure 14. The inspection of these bridges was performed on 5/20/2015 and 5/21/2015.

Br. No.	Bridge Name	Str. ID	Contract	Region	Contractor	Year	Perform.
$90 / 106 \mathrm{~N}$	GOLD CREEK WB	0017852 D	7852	SC	Max J. Kuney Company	2012	No
$90 / 105.5 \mathrm{~N}$	GOLD CREEK ANIMAL CROSSING WB	0017852 B	7852	SC	Max J. Kuney Company	2012	No
$90 / 105.5$ S	GOLD CREEK ANIMAL CROSSING EB	0017852 A	7852	SC	Max J. Kuney Company	2010	No
$195 / 117$	CHENEY SPOKANE RD OVER US 195	0018378 A	8378	ER	Selland Construction	2014	Yes
395/441N-E	N-E RAMP OVER N-N RAMP	0017610 E	7610	ER	Graham Construction \& Manage.	2011	Yes
$2 / 651 \mathrm{~W}-$ S	W-S RAMP OVER US 2/US 395	0017610 D	7610	ER	Graham Construction \& Manage.	2011	No
395/442W	US 395 OVER US 2	$0017610 B$	7610	ER	Graham Construction \& Manage.	2011	No

Figure 14 - Map of East Trip Bridges

NORTH TRIP

The bridges included in this trip are near Tacoma, Bremerton and Marysville areas, as shown in Figure 15. The inspection of these bridges was performed on $5 / 21 / 2015,5 / 22 / 2015$ and 5/29/2015.

Br. No.	Bridge Name	Str. ID	Contract	Region	Contractor	Year	Perform.
$5 / 434$ SCD	SBCD OVER SR 16 HOV \& RAMPS	$0018189 B$	8189	OR	Mowat Construction Company	2013	Yes
$16 / 3 W$	SR 16 OVER HOV	0018189 A	8189	OR	Mowat Construction Company	2014	Yes
$16 / 7$ S-E	S SPRAGUE RAMP	0017594 E	7594	OR	Guy F. Atkinson Construction	2010	No
$303 / 4 \mathrm{~A}$	MANETTE BRIDGE	0017926 A	7926	OR	Manson-Mowat, A Joint Venture	2011	No
$2 / 8.5 \mathrm{~N}-\mathrm{W}$	N-W RAMP (BICKFORD AVE) OVER US 2	0018286 A	8286	NW	Granite Construction Company	2013	Yes
$529 / 25$	EBEY SLOUGH	0017948 A	7948	NW	Granite Construction Company	2012	No
$9 / 133$	SR 9 OVER HARVEY CRK RD	0017267 A	7267	NW	Scarsella Bros., Inc.	2008	No
$9 / 134$	PILCHUCK CREEK	0018363 A	8383	NW	Granite Construction Company	2014	Yes

Figure 15 - Map of North Trip Bridges

BRIDGE DECK SUMMARIES

The cracking of each bridge was evaluated as described in the previous section and grouped into the following categories:

- Single Span Prestressed Girder Bridges
- Two-Span Prestressed Girder Bridges
- Multi-Span Prestressed Girder Bridges
- Multi-Span Steel Plate Girder Bridges

Summaries of each bridge are included in the following sections. For more information on each bridge, see Appendices A through D.

SINGLE SPAN PRESTRESSED GIRDER BRIDGES

Table 2 summarizes and ranks the average crack intensity for each of the single span prestressed girder bridges evaluated. See Appendix A for more information.

Table 2 - Single Span Prestressed Bridge Summary

Br. No.	Bridge Name	Contract	Year	Perform.	Intensity	Cement.	Shrink.
$90 / 105.5 \mathrm{~S}$	GOLD CREEK ANIMAL CROSSING EB	7852	2010	No	40%	735	--
$90 / 105.5 N$	GOLD CREEK ANIMAL CROSSING WB	7852	2012	No	32%	735	--
$5 / 302 E$	PRAIRIE CREEK NB	7465	2009	No	18%	735	--
$9 / 133$	SR 9 OVER HARVEY CRK RD	7267	2008	No	8%	735	--
$5 / 302 \mathrm{~W}$	PRAIRIE CREEK SB	7465	2010	No	4%	735	--
$5 / 229$	MELLON STREET COUPLET	8473	2014	Yes	$<1 \%$	580	0.028%
$101 / 31$	MIDDLE NEMAH RIVER	8344	2014	Yes	0%	610	0.018%

The bridge decks for single span prestressed girder bridges are typically placed in one placement from abutment to abutment.

BRIDGES 90/105.5S \& 90/105.5N (GOLD CREEK ANIMAL CROSSING)

These bridges are parallel bridges carrying l-90 over an animal crossing in Kittitas County. Bridge 90/105.5S was constructed in 2010 and Bridge 90/105.5N was constructed in 2012. Both bridges were constructed as part of the I-90 Hyak to Snowshed Vicinity Phase 1B - Add Lanes and Bridges contract. The contract used the 2008 WSDOT Standard Specifications which include the traditional bridge deck concrete requirements. See Figures 16 \& 17 for the crack intensity diagrams for these bridges. See Figure 18 for pictures depicting the range of cracking represented by the crack intensity diagrams. Both of these bridges are uniformly cracked with the worse cracking intensity occurring near the abutments.

Figure 16 - Bridge 90/105.5S Crack Intensity Diagram

Figure 18 - Range of Deck Cracking for Bridges 90/105.5S \& 90/105.5N

BRIDGES 5/302E \& 5/302W (PRAIRIE CREEK)

These bridges are parallel bridges carrying l-5 over Prairie Creek in Thurston County. Bridge 5/302W was constructed in 2008 and Bridge 5/302E was constructed in 2009. Both bridges were constructed as part of the I-5 Grand Mound to Maytown Stage One - Add Lanes contract. The contract used the 2006 WSDOT Standard Specifications which include the traditional bridge deck concrete requirements. See Figures 19 \& 20 for the crack intensity diagrams for these bridges. See Figure 21 for pictures depicting the range of cracking represented by the crack intensity diagrams.

Half of Bridge 5/302E performed well but the other half performed poorly. This bridge was constructed in stages with a longitudinal construction joint for staging. Bridge $5 / 302 \mathrm{~W}$ performed well with relatively low cracking.

Figure 19 - Bridge 5/302E Crack Intensity Diagram

Figure 20 - Bridge 5/302W Crack Intensity Diagram

Figure 21 - Range of Deck Cracking for Bridges 5/302E \& 5/302W

BRIDGE 9/133 (HARVEY CREEK ROAD)

This bridge carries SR 9 over Harvey Creek and Harvey Creek Road in Snohomish County. It was constructed in 2014 as part of the SR $\mathbf{9}$ Schloman Road to $\mathbf{2 5 6}^{\text {th }}$ ST NE and $\mathbf{2 6 8}{ }^{\text {th }}$ ST Intersection contract. The contract used the 2006 WSDOT Standard Specifications which include the traditional bridge deck concrete requirements. See Figure 22 for the crack intensity diagram for this bridge. See Figure 23 for pictures depicting the range of cracking represented by the crack intensity diagrams. This bridge deck performed very well except for a section near Pier 1. This is a trend that showed up many times during this study.

Figure 22 - Bridge 9/133 Crack Intensity Diagram

Figure 23 - Range of Deck Cracking for Bridge 9/133

BRIDGE 5/229 (MELLEN STREET COUPLET)

This bridge connects multiple ramps over I-5 in Centralia. It was was constructed in 2008 as part of the I-5 Mellen Street to Blakeslee Junction - Stage 2 contract. The contract used the 2012 WSDOT Standard Specifications with Special Provisions which include the performance based bridge deck concrete requirements. See Figure 24 for the crack intensity diagram for this bridge. The bays labeled " XXX " were not inspected due to limited access hindered by l-5 traffic. See Figure 25 for pictures depicting the range of cracking represented by the crack intensity diagrams (crack circled). This bridge deck performed very well with only one crack seen.

Figure $\mathbf{2 4}$ - Bridge 5/229 Crack Intensity Diagram

Figure 25 - Range of Deck Cracking for Bridge 5/229

BRIDGE 101/31 (MIDDLE NEMAH RIVER)

This bridge carries US 101 over the Middle Nemah River in Pacific County. It was constructed in 2014 as part of the US 101 Middle Nemah River Br. Replace Bridge contract. The contract used the 2012 WSDOT Standard Specifications with Special Provisions which include the performance based bridge deck concrete requirements. See Figure 26 for the crack intensity diagram for this bridge. See Figure 27 for pictures depicting the range of cracking represented by the crack intensity diagrams. This bridge deck had no visible cracks.

Figure 26 - Bridge 101/31 Crack Intensity Diagram

Figure 27 - Range of Deck Cracking for Bridge 101/31

Table 3 summarizes and ranks the average crack intensity for each of the two-span prestressed girder bridges evaluated. See Appendix B for more information.

Table 3 - Two-Span Prestressed Bridge Summary

Br. No.	Bridge Name	Contract	Year	Perform.	Intensity	Cement.	Shrink.
$16 / 7 S-E$	S SPRAGUE RAMP	7594	2010	No	59%	735	--
$195 / 117$	CHENEY SPOKANE RD OVER US 195	8378	2014	Yes	10%	0	0.000%
395/442W	US 395 OVER US 2	7610	2011	No	10%	735	--
$16 / 3 W$	SR 16 OVER HOV	8189	2014	Yes	9%	565	0.028%
2/8.5N-W	N-W RAMP (BICKFORD AVE) OVER US 2	8286	2013	Yes	6%	610	0.032%
395/441N-E	N-E RAMP OVER N-N RAMP	7610	2011	Yes	$<1 \%$	565	0.034%

The bridge decks for two-span prestressed girder bridge decks are typically placed in two placements (one each span) with closure pours over the middle pier.

BRIDGE 16/7S-E (SOUTH SPRAGUE RAMP)

This bridge carries the ramp from SR 16 to Sprague Street as part of the Nalley Valley interchange in Tacoma. It was constructed in 2010 as part of the I-5/SR 16 WB Nalley Valley I/C contract and connects into another bridge at Pier 1. The contract used the 2008 WSDOT Standard Specifications which include the traditional bridge deck concrete requirements. See Figure 28 for the crack intensity diagram for this bridge. See Figure 29 for pictures depicting the range of cracking represented by the crack intensity diagrams. This bridge deck has very severe cracking throughout and is one of the worst looking bridge decks evaluated for this study.

Figure 28 - Bridge 16/7S-E Crack Intensity Diagram

Figure 29 - Range of Deck Cracking for Bridge 16/7S-E

BRIDGE 195/117 (CHENEY-SPOKANE ROAD)

This bridge carries traffic over US 195 at the Cheney-Spokane Road Interchange in Spokane. It was constructed in 2014 as part of the US 195 Cheney-Spokane Rd - New Interchange contract. The contract used the 2012 WSDOT Standard Specifications with Special Provisions which include the performance based bridge deck concrete requirements. See Figure 30 for the crack intensity diagram for this bridge. See Figure 31 for pictures depicting the range of cracking represented by the crack intensity diagrams (cracks circled). This bridge deck performed well except for a section in Span 1 near Pier 2.

Figure 30 - Bridge 195/117 Crack Intensity Diagram

Figure 31 - Range of Deck Cracking for Bridge 195/117

This bridge carries US 395 southbound over US 2 in Spokane County. It was constructed in 2011 as part of the US 395 NSC - US 2 Lowering contract. The contract used the 2008 WSDOT Standard Specifications which include the traditional bridge deck concrete requirements. See Figure 32 for the crack intensity diagram for this bridge. See Figure 33 for pictures depicting the range of cracking represented by the crack intensity diagrams (cracks circled). This bridge deck performed well overall but had more cracking near Pier 2 in both spans.

Figure 32 - Bridge 395/442W Crack Intensity Diagram

Figure 33 - Range of Deck Cracking for Bridge 395/442W

BRIDGE 16/3W (SR 16 OVER HOV)

This bridge carries traffic over the future HOV connector between I-5 and SR 16 as part of the Nalley Valley Interchange in Tacoma. It was constructed in 2014 as part of the I-5 / SR $\mathbf{1 6}$ EB Nalley Valley - HOV contract. The contract used the 2010 WSDOT Standard Specifications with Special Provisions which include the performance based bridge deck concrete requirements. See Figure 34 for the crack intensity diagram for this bridge. See Figure 35 for pictures depicting the range of cracking represented by the crack intensity diagrams. This bridge deck performed very well overall but had more cracking near Pier 2 in Span 1 and near the Pier 3 abutment.

Figure 34 - Bridge 16/3W Crack Intensity Diagram

Figure 35 - Range of Deck Cracking for Bridge 16/3W

BRIDGE 2/8.5N-W (BICKFORD AVE OVER US 2)

This bridge carries traffic over US 2 at the Bickford Ave Interchange in Snohomish County. It was constructed in 2013 as part of the US 2 Bickford Avenue I/C Safety and Culvert Replacement contract. The contract used the 2012 WSDOT Standard Specifications with Special Provisions which include the performance based bridge deck concrete requirements. See Figure 36 for the crack intensity diagram for this bridge. See Figure 37 for pictures depicting the range of cracking represented by the crack intensity diagrams. This bridge deck performed well with highest cracking intensity occurring near Pier 2 in Span 1.

Figure 36 - Bridge 2/8.5N-W Crack Intensity Diagram

Figure 37 - Range of Deck Cracking for Bridge 2/8.5N-W

395/441N-E (N-E RAMP OVER N-N RAMP)

This bridge carries traffic from US 395 to US 2 in Spokane County. It was constructed in 2011 as part of the US 395 NSC - US 2 Lowering contract. The contract used the 2008 WSDOT Standard Specifications with Special Provisions which include the performance based bridge deck concrete requirements for this bridge only. It was the first bridge to use the revised bridge deck concrete requirements. See Figure 38 for the crack intensity diagram for this bridge. See Figure 39 for pictures depicting the range of cracking represented by the crack intensity diagrams. This bridge deck performed very well and only one small diagonal crack near the Pier 3 abutment was observed.

Figure 38 - Bridge 395/441N-E Crack Intensity Diagram

Figure 39 - Range of Deck Cracking for Bridge 395/441N-E

MULTI-SPAN PRESTRESSED GIRDER BRIDGES

Table 4 summarizes and ranks the average crack intensity for each of the multi-span prestressed girder bridges evaluated. See Appendix C for more information.

Table 4 - Multi-Span Prestressed Girder Bridge Summary

Br. No.	Bridge Name	Contract	Year	Perform.	Intensity	Cement.	Shrink.
$303 / 4 \mathrm{~A}$	MANETTE BRIDGE	7926	2011	No	73%	735	--
$90 / 106 N$	GOLD CREEK WB	7852	2012	No	44%	735	--
$6 / 115$	S FORK CHEHALIS R	7587	2009	No	32%	735	--
$5 / 234 W$	I-5 OVER BLAKESLEE JCT RR	8272	2013	Yes	9%	580	0.030%
$105 / 4$	NORTH RIVER	8345	2014	Yes	7%	610	0.018%
$105 / 3$	SMITH CREEK	8345	2013	Yes	6%	610	0.018%
$6 / 8$	WILLAPA RIVER	8464	2014	Yes	5%	610	0.018%
$5 / 232 N C D$	SKOOKUMCHUCK RIVER NCD	8272	2013	Yes	2%	580	0.030%
$5 / 232 S C D$	SKOOKUMCHUCK RIVER SCD	8272	2013	Yes	1%	580	0.030%
$101 / 44$	BONE RIVER	8292	2013	Yes	1%	610	0.018%

Similar to the two-span prestressed girder bridges, the multi-span prestressed girder bridge decks are typically placed in multiple placements (one each span) with closure pours over the interior piers.

BRIDGE 303/4A (MANETTE BRIDGE)

This bridge connects the City of Bremerton to the neighborhood of Manette over the Port Washington Narrows. It was formerly SR 303 but is no longer part of the state route system. It was constructed in 2011 as part of the Manette Bridge 303/4A Bridge Replacement contract. The bridge superstructure consists of precast prestressed spliced girders with a cast-in-place bridge deck. The girder segments were post-tensioned together before the deck was placed. The contract used the 2010 WSDOT Standard Specifications which include the traditional bridge deck concrete requirements. See Figure 40 for the crack intensity diagram for this bridge (spans 3, 4, and 5 not shown). Cracks in Spans 2 thru 5 were not counted due to limited access, but based on a visual comparison the rest of the bridge is similar to the approaches. See Figure 41 for pictures depicting the range of cracking represented by the crack intensity diagrams. This bridge deck performed very poorly and is the worst of the bridge decks evaluated for this report.

Figure 40 - Bridge 303/4A Crack Intensity Diagram

Figure 41 - Range of Deck Cracking for Bridge 303/4A

BRIDGE 90/106N (GOLD CREEK BRIDGE)

This bridge carries I-90 over Gold Creek in Kittitas County and was constructed in 2012 as part of the I-90 Hyak to Snowshed Vicinity Phase 1B - Add Lanes and Bridges contract. The contract used the 2008 WSDOT Standard Specifications which include the traditional bridge deck concrete requirements. See Figure 42 for the crack intensity diagrams for this bridge. See Figure 43 for pictures depicting the range of cracking represented by the crack intensity diagrams. This bridge deck generally performed poor to very poor. While not evaluated for this report, the parallel bridge (90/106S) was similar.

Figure 42 - Bridge 90/106N Crack Intensity Diagram

Figure 43 - Range of Deck Cracking for Bridge 90/106N

BRIDGE 6/115 (SOUTH FORK CHEHALIS RIVER)

This bridge carries SR 6 over South Fork Chehalis River in Lewis County and was constructed in 2009 as part of the SR 6 So. Fork Chehalis River Bridge contract. The contract used the 2008 WSDOT Standard Specifications which include the traditional bridge deck concrete requirements. See Figure 44 for the crack intensity diagrams for this bridge. See Figure 45 for pictures depicting the range of cracking represented by the crack intensity diagrams. This bridge deck had portions that performed well and portions that performed very poor.

Figure 44 - Bridge 6/115 Crack Intensity Diagram

Figure 45 - Range of Deck Cracking for Bridge 6/115

BRIDGE 5/234W (I-5 OVER BLAKESLEE RAILROAD JUNCTION)

This bridge carries southbound I-5 over West Reynolds Avenue in Centralia. It was constructed in 2013 as part of the I-5 Mellen Street to Blakeslee Junction - Stage 1 contract. The contract used the 2012 WSDOT Standard Specifications with Special Provisions which include the performance based bridge deck concrete requirements. See Figure 46 for the crack intensity diagram for this bridge. See Figure 47 for pictures depicting the range of cracking represented by the crack intensity diagrams (cracks circled). Spans $1 \& 2$ of this bridge deck performed well while Span 3 performed very well.

Figure 46 - Bridge 5/234W Crack Intensity Diagram

Figure 47 - Range of Deck Cracking for Bridge 5/234W

BRIDGE 105/4 (NORTH RIVER)

This bridge carries SR 105 over North River in Pacific County. It was constructed in 2014 as part of the SR 105 Smith Creek and North River Replace Bridges contract. The contract used the 2012 WSDOT Standard Specifications with Special Provisions which include the performance based bridge deck concrete requirements. See Figure 48 for the crack intensity diagram for this bridge. Cracks in portions of Span 1 and all of Spans 2 \& 3 were not counted due to limited access. See Figure 49 for pictures depicting the range of cracking represented by the crack intensity diagrams. The bridge deck performed well near the piers and very well near the abutments.

Figure 48 - Bridge 105/4 Crack Intensity Diagram

Figure 49 - Range of Deck Cracking for Bridge 105/4

BRIDGE 105/3 (SMITH CREEK)

This bridge carries SR 105 over Smith Creek. It was constructed in 2013 as part of the SR $\mathbf{1 0 5}$ Smith Creek and North River Replace Bridges contract. The contract used the 2012 WSDOT Standard Specifications with Special Provisions which required the performance based bridge deck concrete requirements. See Figure 50 for the crack intensity diagram for this bridge. Cracks in Span 2 were not counted due to limited access. See Figure 51 for pictures depicting the range of cracking represented by the crack intensity diagrams. The bridge deck performed well near the piers and very well near the abutments.

Figure 50 - Bridge 105/3 Crack Intensity Diagram

Figure 51 - Range of Deck Cracking for Bridge 105/3

BRIDGE 6/8 (WILLAPA RIVER)

This bridge carries SR 6 over Willapa River. It was constructed in 2014 as part of the SR 6 Willapa River Bridge Replace Bridge contract. The contract used the 2012 WSDOT Standard Specifications with Special Provisions which include the performance based bridge deck concrete requirements. See Figure 52 for the crack intensity diagram for this bridge. See Figure 53 for pictures depicting the range of cracking represented by the crack intensity diagrams. The bridge deck performed generally very well.

Figure 52 - Bridge 6/8 Crack Intensity Diagram

Figure 53 - Range of Deck Cracking for Bridge 6/8

BRIDGES 5/232NCD AND 5/232SCD (SKOOKUMCHUCK RIVER CD)

These parallel bridges are collector distributors for I-5 over the Skookumchuck River. They were constructed in 2013 as part of the I-5 Mellen Street to Blakeslee Junction - Stage 1 contract. The contract used the 2012 WSDOT Standard Specifications with Special Provisions which include the performance based bridge deck concrete requirements. See Figures 54 \& 55 for the crack intensity diagram for these bridges. Cracks were not counted for the middle of Span 2 for Bridge 5/232NCD due to limited access. See Figure 56 for pictures depicting the range of cracking represented by the crack intensity diagrams. The bridge decks for these bridges performed very well.

Figure 54 - Bridge 5/232NCD Crack Intensity Diagram

Figure 55 - Bridge 5/232SCD Crack Intensity Diagram

Figure 56 - Range of Deck Cracking for Bridges 5/232NCD \& 5/232SCD

101/44 (BONE RIVER)

This bridge carries US 101 over Bone River. It was constructed in 2013 as part of the US $\mathbf{1 0 1}$ Bone River Bridge Replace Bridge contract. The contract used the 2012 WSDOT Standard Specifications with Special Provisions which include the performance based bridge deck concrete requirements. See Figure 57 for the crack intensity diagram for this bridge. Cracks in Span 2 were not counted due to limited access. See Figure 58 for pictures depicting the range of cracking represented by the crack intensity diagrams (cracks circled). The bridge deck performed very well.

Figure 57 - Bridge 101/44 Crack Intensity Diagram

Figure 58 - Range of Deck Cracking for Bridge 101/44

MULTI-SPAN STEEL PLATE GIRDER BRIDGES

Table 5 summarizes and ranks the average crack intensity for each of the multi-span steel plate girder bridges evaluated. See Appendix D for more information.

Table 5 - Multi-Span Steel Plate Girder Bridge Summary

Br. No.	Bridge Name	Contract	Year	Perform.	Intensity	Cement.	Shrink.
5/434SCD	SBCD OVER SR 16 HOV \& RAMPS	8189	2013	Yes	36%	565	0.028%
$529 / 25$	EBEY SLOUGH	7948	2012	No	36%	735	--
$2 / 651 W-S$	W-S RAMP OVER US 2/US 395	7610	2011	No	13%	735	--
$9 / 134$	PILCHUCK CREEK	8383	2014	Yes	7%	611	0.031%

Unlike prestressed girder bridges, steel plate girder bridges do not place bridge deck concrete by span. They have a specific placement order with transverse construction joints within each span. See Figure 59 for an example.

Figure 59 - Steel Plate Girder Bridge Deck Construction Joints

5/434SCD (SBCD OVER SR 16 HOV AND RAMPS)

This bridge is a collector distributor for I-5 over SR 16 at the Nalley Valley Interchange in Tacoma. It was constructed in 2013 as part of the I-5 / SR 16 EB Nalley Valley - HOV contract. The contract used the 2012 WSDOT Standard Specifications with Special Provisions which included the performance based bridge deck concrete requirements. See Figure 60 for the crack intensity diagram for this bridge. See Figure 61 for pictures depicting the range of cracking represented by the crack intensity diagrams. The bridge deck performed very poorly near Piers $2 \& 3$ and in Span 2, but very well in Spans $1 \& 3$ near the abutments. This bridge exhibits the worst cracking of the performance based bridge decks.

Figure 60 - Bridge 5/434SCD Crack Intensity Diagram

Figure 61 - Range of Deck Cracking for Bridge 5/434SCD

529/25 (EBEY SLOUGH)

This bridge carries SR 529 over Ebey Slough in Marysville and was constructed in 2012 as part of the SR 529 Ebey Slough Br. - Replace Bridge contract. The contract used the 2010 WSDOT Standard Specifications which include the traditional bridge deck concrete requirements. See Figure 62 for the crack intensity diagrams for this bridge. Cracks were not counted in the majority of the interior spans due to limited access. See Figure 63 for pictures depicting the range of cracking represented by the crack intensity diagrams (spans 2 and 3 not shown). This bridge deck performed poor to very poor.

Figure 62 - Bridge 529/25 Crack Intensity Diagram

Figure 63 - Range of Deck Cracking for Bridge 529/25

2/651W-S (W-S RAMP OVER US 2 / US 395)

This bridge carries traffic from US 395 to US 2 in Spokane County and was constructed in 2012 as part of the US 395 NSC - US 2 Lowering contract. The contract used the 2008 WSDOT Standard Specifications which include the traditional bridge deck concrete requirements. See Figure 64 for the crack intensity diagrams for this bridge. See Figure 65 for pictures depicting the range of cracking represented by the crack intensity diagrams. This bridge deck performance ranged from well to poor with some spots of very poor.

Figure 64 - Bridge 2/651W-S Crack Intensity Diagram

Figure 65 - Range of Deck Cracking for Bridge 2/651W-S

9/134 (PILCHUCK CREEK)

This bridge carries SR 9 over Pilchuck Creek. It was constructed in 2014 as part of the SR 9 Pilchuck Creek Replace Bridge contract. The contract used the 2012 WSDOT Standard Specifications with Special Provisions which include the performance based bridge deck concrete requirements. See Figure 66 for the crack intensity diagram for this bridge. See Figure 67 for pictures depicting the range of cracking represented by the crack intensity diagrams. The bridge deck performed very well throughout most of the bridge with a few areas of good to poor performance near the construction joints.

Figure 66 - Bridge 9/134 Crack Intensity Diagram

Figure 67 - Range of Deck Cracking for Bridge 9/134

Table 6 ranks all the bridges evaluated from most severe to least severe average crack intensity. Also listed are total maximum and minimum crack intensity, total cementitious content and shrinkage test results at 28-days.

Table 6 - Bridges Ranked by Average Crack Intensity

Br. No.	Bridge Name	Contract	Year	Perform.	Average Crack Intensity	Min. Crack Intensity	Max. Crack Intensity	Total Cement.	$\begin{gathered} \hline \text { Shrink } \\ \text { at } \\ \text { 28-days } \\ \hline \end{gathered}$
303/4A	MANETTE BRIDGE	7926	2011	No	73\%	45\%	100\%	735	--
16/7S-E	S SPRAGUE RAMP	7594	2010	No	59\%	30\%	95\%	735	--
90/106N	GOLD CREEK WB	7852	2012	No	44\%	5\%	80\%	735	--
90/105.5S	GOLD CREEK ANIMAL CROSSING EB	7852	2010	No	40\%	20\%	60\%	735	--
5/434SCD	SBCD OVER SR 16 HOV \& RAMPS	8189	2013	Yes	36\%	0\%	100\%	565	0.028\%
529/25	EBEY SLOUGH	7948	2012	No	36\%	0\%	80\%	735	--
6/115	S FORK CHEHALIS R	7587	2009	No	32\%	0\%	65\%	735	--
90/105.5N	GOLD CREEK ANIM AL CROSSING WB	7852	2012	No	32\%	10\%	55\%	735	--
5/302E	PRAIRIE CREEK NB	7465	2009	No	18\%	0\%	65\%	735	--
2/651W-S	W-S RAMP OVER US 2/US 395	7610	2011	No	13\%	0\%	65\%	735	--
195/117	CHENEY SPOKANE RD OVER US 195	8378	2014	Yes	10\%	0\%	33\%	no records found	
395/442W	US 395 OVER US 2	7610	2011	No	10\%	0\%	30\%	735	--
5/234W	I-5 OVER BLAKESLEE JCT RR	8272	2013	Yes	9\%	0\%	25\%	580	0.030\%
16/3W	SR 16 OVER HOV	8189	2014	Yes	9\%	0\%	35\%	565	0.028\%
9/133	SR 9 OVER HARVEY CRK RD	7267	2008	No	8\%	0\%	45\%	735	--
9/134	PILCHUCK CREEK	8383	2014	Yes	7\%	0\%	45\%	611	0.031\%
105/4	NORTH RIVER	8345	2014	Yes	7\%	0\%	25\%	610	0.018\%
2/8.5N-W	N-W RAMP (BICKFORD AVE) OVER US 2	8286	2013	Yes	6\%	0\%	20\%	610	0.032\%
105/3	SMITH CREEK	8345	2013	Yes	6\%	0\%	20\%	610	0.018\%
6/8	WILLAPA RIVER	8464	2014	Yes	5\%	0\%	15\%	610	0.018\%
5/302W	PRAIRIE CREEK SB	7465	2010	No	4\%	0\%	15\%	735	--
5/232NCD	SKOOKUMCHUCK RIVER NCD	8272	2013	Yes	2\%	0\%	10\%	580	0.030\%
5/232SCD	SKOOKUM CHUCK RIVER SCD	8272	2013	Yes	1\%	0\%	10\%	580	0.030\%
5/229	MELLON STREET COUPLET	8473	2014	Yes	< 1\%	0\%	5\%	580	0.028\%
395/441N-E	N-E RAMP OVER N-N RAMP	7610	2011	Yes	< 1\%	0\%	5\%	565	0.034\%
101/44	BONE RIVER	8292	2013	Yes	< 1\%	0\%	5\%	610	0.018\%
101/31	MIDDLE NEMAH RIVER	8344	2014	Yes	0\%	0\%	0\%	610	0.018\%

In general, the performance based concrete specification resulted in fewer restraint cracks in bridge decks than the traditional concrete specification. A few of the traditional bridge decks performed similar to the performance based bridge decks, but this appears to be the exception, not the rule. Only one of the performance based concrete decks had a high intensity of cracking. It is unclear what contributed to the poor performance of this particular bridge deck.

What is apparent from this study is that cracking of bridge decks is variable within same bridge. In some cases, it appears to be variable within the same concrete placement. This indicates that there are many variables that affect the cracking performance of a bridge deck that change during the construction of the bridge.

As a measure of overall success, 10% average crack intensity could be defined as good performance. For individual bays, a possible scale for bridge deck cracking performance could be:

$$
\text { Good }=0 \% \text { to } 25 \% \quad \text { Fair }=25 \% \text { to } 50 \% \quad \text { Bad }=50 \% \text { to } 100 \%
$$

DECK CONCRETE SPECIFICATION EVALUATION

Overall, the current performance based specification appears to be providing good results in a practical manner. There is no evidence that the performance based limits need to be changed. It does not appear that Contractors have had issues achieving them and the superstructure lump sum costs do not appear to have increased dramatically.

There are areas of the specification that could be improved as it relates to specifying shrinkage reducing admixtures, reporting test results and monitoring deck temperatures. As they are currently written, there is much inconsistency with how these elements are provided to WSDOT.

SHRINKAGE REDUCING AD-MIXTURE

Shrinkage reducing ad-mixtures (SRA) are used to meet the shrinkage limits in the specification. All of the performance based bridges evaluated had SRA in the deck concrete. Contractors are required to submit their mix design on WSDOT form 350-040 which allows estimated ranges for ad-mixtures. See Appendix A though D for concrete mix designs submitted for the performance based bridge decks.

Some of the concrete mix design submittals received for this report list a range for the SRA (e.g. 1-150 oz/cy). This could lead to a concrete mix being tested for shrinkage with SRA at the high end of the range but being placed in the field with SRA at the low end of the range. To correct this potential issue, the SRA dose should be listed as one number on the Concrete Mix Design form (or a very narrow range), and the SRA used in the shrinkage test should match.

TEST REPORT FOR SHRINKAGE

Shrinkage tests are required to be performed in accordance with AASHTO T 160 (or equivalent ASTM C 157) and submitted following the reporting requirements of these procedures; however, there is much inconsistency in the shrinkage test reports submitted. See Appendix A though D for shrinkage test reports submitted for the performance based bridge decks.

In general, the shrinkage test is performed in the following way:

- Three specimens are cast in molds
- Specimens are removed from the molds a day after casting
- Specimens are measured for the initial length reading
- Specimens are stored in lime-saturated water until they have reached an age of 28-days
- Specimens are measured for a length reading at the end of the curing (drying day zero)
- Specimens are stored in air and allowed to shrink
- All three specimens are measured at 4, 7, 14 and 28 days
- These readings are converted into length change percentages (or microstrains)
- The average length change of the three specimens is reported

See Figure 68 for a typical shrinkage report.

Figure 68 - Shrinkage Test Report
The information included in the shrinkage reports received for this study did not always include length change values at each of the days specified in the test procedure; one report only listed a single value. In addition, the values for the individual test specimens where not always given. Most of the reports only listed the average of the three specimens.

To ensure proper conformance with the performance limit, consistent information needs to be provided for review and acceptance.

TEMPERATURE MONITORING

Contractors are required to embed temperature monitors and record deck temperatures for seven days after concrete placement and submit the data to WSDOT. There is a limit on concrete temperature at the time of placement, but there are no contractual limits associated with the temperature of the deck concrete after placement (as it sets and cures). Contractors are also required to measure ambient air temperature near the embedded temperature monitors.

One of the expectations going into this study was to correlate concrete temperatures to performance. No correlation could be found because temperature data received for this study varied and was often incomplete or obviously in error. For example, multi-span bridges evaluated in this study often only had one set of temperature readings even though there are multiple deck placements. A couple sets of temperature data had very high and very low temperatures ($500^{\circ} \mathrm{F}+$ to $-32^{\circ} \mathrm{F}$) which are obviously in error.

Additionally, when good temperature data was received, it was difficult to identify where the temperature readings were taken. This made it challenging to correlate the temperature with deck performance in local areas. The visual inspections performed for this study indicate that performance can vary significantly within in the same concrete placement and exact placement of the temperature readings could have been very informative.

Peak temperature or differences between concrete temperature and ambient temperature could correlate with deck performance. Good documentation of these temperatures in a consistent format could help identify possible performance limits to place on peak temperature or temperature difference.

Based on the visual inspection, concrete submittals and temperature data for the bridges evaluated in this study, the following recommendations are suggested to continue achieving reduced early-age cracks in bridge decks. Additional suggestions are provided to aid in the continuation of collection of data to further refine or justify the performance limits required.

1. No current changes to the performance limits, aggregate size, curing method or texturing methods are recommended.
2. Continuation of bridge deck evaluation is recommended. Suggest using the same method as outlined in this report for bridges which the underside of the deck is visible. Perhaps a team or individual can be tasked with collecting data and evaluating the bridge decks shortly after they are completed. A spreadsheet similar to those used for this evaluation can be utilized to record information for future bridges.
3. Development of an evaluation method for bridges which the underside of the deck is not visible (deck bulb-tee's) is recommended.
4. It is recommended that a form is provided to the Contractor for the required test results for ease of tracking and comparison.
5. Locating the embedded temperature monitors in the contract plans is recommended. Multiple temperature monitors should be included for each deck placement. At a minimum, one at each end and one mid-span. The embedded monitors should be located as close to mid-slab thickness as possible.
6. Temperature monitor data could be very informative and it is recommended that the data received from the Contractor should include, at a minimum, the following elements: date and time which concrete placement started, where concrete placement started, location of monitor, temperature measurements at hour max intervals. Perhaps a form can be provided for ease of review.
7. It is recommended that peak temperature and maximum temperature limits be established. This may provide a tool to reject a deck that performs very poorly due to extreme temperature or temperature differences. While no evidence of type of this behavior was seen in this study, adding contractual limits requirements may result in better temperature data.
8. Information on the temperature changes over time for a specific concrete mix may be useful during the mix design phase. It could be used to compare one mix to the other and possibly aid in developing performance based limits that can be added to the concrete mix design requirements. See the "SR 520 ACME Project Final Findings Report" dated November 30, 2010 for examples of temperature data collection during the mix design phase.

APPENDIX A

SINGLE SPAN PRESTRESSED GIRDER BRIDGES

BRIDGE 90/105.5S (GOLD CREEK ANIMAL CROSSING EB)
BRIDGE 90/105.5N (GOLD CREEK ANIMAL CROSSING WB)

BRIDGE 5/302E (PRAIRIE CREEK NB)
BRIDGE 5/302W (PRAIRIE CREEK SB)
BRIDGE 9/133 (SR 9 OVER HARVEY CREEK ROAD)

BRIDGE 5/229 (MELLEN STREET COUPLET)

BRIDGE 101/31 (MIDDLE NEMAH RIVE)

BRIDGE 90/105.5S (GOLD CREEK ANIMAL CROSSING EB)

CONTENTS

1. Layout Plan Sheet
2. Field Notes
3. Crack Summary
4. Crack Intensity Diagram

$90 / 105.55$

Bridge \# \qquad Bridge Name Gold Creek Animal Crossing EB Structure ID \qquad
Contract \# \qquad
\qquad Performance Deck Concrete? \qquad
Contractor \qquad Concrete Supplier \qquad Deck Placement \qquad
Bridge Description Single Span (118.5'), 8-WF50G Girders, 3-Lanes (56' wide roadway)

$\begin{aligned} & \mathrm{L}=\text { length between diaphragms (or length of "bay") } \\ & \mathrm{S}=\text { girder spacing } \end{aligned}$								
$\begin{aligned} \mathrm{N}_{\mathrm{cr}} & =\text { number of leaching cracks counted during visual inspection } \\ \% & =\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) } \end{aligned}$							$\begin{aligned} & \text { Avg. = } \\ & \text { Min. } \end{aligned}$	$\begin{aligned} & \hline 40 \% \\ & 20 \% \end{aligned}$
Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	N_{cr}	N_{100}	\%
1	1	A	B	37.75	7.25	5	19	25\%
1	1	B	C	37.75	7.25	5	19	25\%
1	1	C	D	37.75	7.25	8	19	40\%
1	1	D	E	37.75	7.25	9	19	45\%
1	1	E	F	37.75	7.25	10	19	55\%
1	1	F	G	37.75	7.25	8	19	40\%
1	1	G	H	37.75	7.25	8	19	40\%
1	2	A	B	37.75	7.25	4	19	20\%
1	2	B	C	37.75	7.25	4	19	20\%
1	2	C	D	37.75	7.25	6	19	30\%
1	2	D	E	37.75	7.25	5	19	25\%
1	2	E	F	37.75	7.25	6	19	30\%
1	2	F	G	37.75	7.25	9	19	45\%
1	2	G	H	37.75	7.25	5	19	25\%
1	3	A	B	37.75	7.25	10	19	55\%
1	3	B	C	37.75	7.25	9	19	45\%
1	3	C	D	37.75	7.25	11	19	60\%
1	3	D	E	37.75	7.25	11	19	60\%
1	3	E	F	37.75	7.25	11	19	60\%
1	3	F	G	37.75	7.25	11	19	60\%
1	3	G	H	37.75	7.25	9	19	45\%

CRACKING INTENSITY ~ BRIDGE 90/105.5S
100\% = CRACK EVERY 2 FT.

BRIDGE NUMBER	$90 / 105.5 \mathrm{~S}$
BRIDGE NAME	GOLD CREEK ANIMAL CROSSING EB
INSPECTION DATE	$5 / 20 / 2015$
DECK CONCRETE	TRADITIONAL

BRIDGE 90/105.5N (GOLD CREEK ANIMAL CROSSING WB)

Bridge \#	90/105.5N		Name	Gold Creek Animal	ossing WB	Structur	00178	52B
Contract \#	7852	Region	SC	Project Engineer	Will Smith	Performance Deck Concrete?		No
Contractor	Max J. Kuney Company Concrete Supplier				Concrete Supplier	Deck Placement	≈ 2012	
Bridge Description Single Span (120'), 8-WF50G Girders, 3-Lanes (56' wide roadway)								

CONTENTS

1. Layout Plan Sheet
2. Field Notes
3. Crack Summary
4. Crack Intensity Diagram

Bridge \#	90/105.5N		Name	Gold Creek Animal Crossing WB		Structure ID	0017852B	
Contract \#	7852	Region	SC	Project Engineer \qquad Concrete Supplier		Performance Deck Concrete? No		
Contractor	Max J. Kuney Company					Deck Placement	≈ 2012	
Single Span (120'), 8-WF50G Girders, 3-Lanes (56' wide roadway)								

$\mathrm{L}=$ length between diaphragms (or length of "bay") $\mathrm{S}=$ girder spacing								
$\mathrm{N}_{100}=$ number of cracks equal to get 100% cracking severity $=\mathrm{L} / 2 \mathrm{ft}$ (transverse crack spaced at 2 ft on ce								
$\begin{aligned} \mathrm{N}_{\mathrm{cr}} & =\text { number of leaching cracks counted during visual inspection } \\ \% & =\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) } \end{aligned}$							$\begin{aligned} & \text { Avg. = } \\ & \text { Min. }= \end{aligned}$	$\begin{aligned} & \hline 32 \% \\ & 10 \% \end{aligned}$
Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	$\mathrm{N}_{\text {cr }}$	N_{100}	\%
1	1	A	B	38.25	7.25	4	19	20\%
1	1	B	C	38.25	7.25	7	19	35\%
1	1	C	D	38.25	7.25	8	19	40\%
1	1	D	E	38.25	7.25	9	19	45\%
1	1	E	F	38.25	7.25	9	19	45\%
1	1	F	G	38.25	7.25	9	19	45\%
1	1	G	H	38.25	7.25	4	19	20\%
1	2	A	B	38.25	7.25	2	19	10\%
1	2	B	C	38.25	7.25	4	19	20\%
1	2	C	D	38.25	7.25	4	19	20\%
1	2	D	E	38.25	7.25	5	19	25\%
1	2	E	F	38.25	7.25	3	19	15\%
1	2	F	G	38.25	7.25	5	19	25\%
1	2	G	H	38.25	7.25	3	19	15\%
1	3	A	B	38.25	7.25	9	19	45\%
1	3	B	C	38.25	7.25	8	19	40\%
1	3	C	D	38.25	7.25	10	19	55\%
1	3	D	E	38.25	7.25	9	19	45\%
1	3	E	F	38.25	7.25	9	19	45\%
1	3	F	G	38.25	7.25	8	19	40\%
1	3	G	H	38.25	7.25	6	19	30\%

CRACKING INTENSITY ~ BRIDGE 90/105.5N

100\% = CRACK EVERY 2 FT.

BRIDGE 5/302E (PRAIRIE CREEK NB)

CONTENTS

1. Layout Plan Sheet
2. Field Notes
3. Crack Summary
4. Crack Intensity Diagram

Bridge Description Single-Span (77'), 8-WF42G Girders, 4-Lanes (variable wdth roadway abt. 70' wide)

$$
\begin{aligned}
& \text { L = length between diaphragms (or length of "bay") } \\
& \mathrm{S}=\text { girder spacing }
\end{aligned}
$$

$$
\mathrm{N}_{100}=\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse crack spaced at } 2 \mathrm{ft} \text { on center) }
$$

$$
\begin{aligned}
\mathrm{N}_{\mathrm{cr}} & =\text { number of leaching cracks counted during visual inspection } \\
\% & =\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) }
\end{aligned}
$$

Avg. $=18 \%$

Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	$\mathrm{N}_{\text {cr }}$	N_{100}	$\%$
1	1	A	B	36.00	5.50	3	18	15%
1	1	B	C	36.00	5.50	8	18	45%
1	1	C	D	36.00	5.50	10	18	55%
1	1	D	E	36.00	5.50	1	18	5%
1	1	E	F	36.00	5.50	0	18	0%
1	1	F	G	36.00	3.50	1	18	5%
1	1	G	H	36.00	3.50	0	18	0%
2	2	A	B	36.00	5.50	2	18	10%
2	2	B	C	36.00	5.50	7	18	40%
2	2	C	D	36.00	5.50	12	18	65%
2	2	D	E	36.00	5.50	1	18	5%
2	2	E	F	36.00	5.50	1	18	5%
2	2	F	G	36.00	4.50	0	18	0%
2	2	G	H	36.00	4.50	1	18	5%

CRACKING INTENSITY ~BRIDGE 5/302E
100\% = CRACK EVERY 2 FT.

BRIDGE NUMBER	$5 / 302 E$
BRIDGE NAME	PRAIRIE CREEK NB
INSPECTION DATE	$4 / 8 / 2015$
DECK CONCRETE	TRADITIONAL

BRIDGE 5/302W (PRAIRIE CREEK SB)

Bridge Description Single-Span (80'), 8-WF42G Girders, 4-Lanes (variable wdth roadway abt. 76' wide)

CONTENTS

1. Layout Plan Sheet
2. Field Notes
3. Crack Summary
4. Crack Intensity Diagram

\qquad Bridge Name Prairie Creek SB Structure ID \qquad 0017465B
Contract \# 7465 Region SW \quad Project Engineer \quad McNutt/Engel \quad Performance Deck Concrete? No
Contractor Scarsella Bros.
Concrete Supplier
Unknown Deck Placement ≈ 2010
Bridge Description Single-Span (80'), 8-WF42G Girders, 4-Lanes (variable wdth roadway abt. 76' wide)

$$
\begin{aligned}
& \text { L = length between diaphragms (or length of "bay") } \\
& \mathrm{S}=\text { girder spacing }
\end{aligned}
$$

$$
\mathrm{N}_{100}=\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse crack spaced at } 2 \mathrm{ft} \text { on center) }
$$

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{cr}}=\text { number of leaching cracks counted during visual inspection } \\
& \%=\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) }
\end{aligned}
$$

Avg.	$=4 \%$
Min	$=$

Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	$\mathrm{N}_{\text {cr }}$	Max. $=15 \%$	
1	1	A	B	36.00	5.00	0	18	0%
1	1	B	C	36.00	5.50	0	18	0%
1	1	C	D	36.00	5.50	1	18	5%
1	1	D	E	36.00	5.50	1	18	5%
1	1	E	F	36.00	5.50	1	18	5%
1	1	F	G	36.00	5.50	1	18	5%
1	1	G	H	36.00	5.50	0	18	0%
2	2	A	B	36.00	5.00	0	18	0%
2	2	B	C	36.00	5.50	0	18	0%
2	2	C	D	36.00	5.50	3	18	15%
2	2	D	E	36.00	5.50	2	18	10%
2	2	E	F	36.00	5.50	1	18	5%
2	2	F	G	36.00	5.50	1	18	5%
2	2	G	H	36.00	5.50	0	18	0%

CRACKING INTENSITY ~ BRIDGE 5/302W

100% = CRACK EVERY 2 FT.

BRIDGE NUMBER	$5 / 302 \mathrm{~W}$
BRIDGE NAME	PRAIRIE CREEK SB
INSPECTION DATE	$4 / 8 / 2015$
DECK CONCRETE	TRADITIONAL

BRIDGE 9/133 (SR 9 OVER HARVEY CREEK ROAD)

CONTENTS

1. Layout Plan Sheet
2. Field Notes
3. Crack Summary
4. Crack Intensity Diagram

FRAMING PLAN

bearing of piers and diaphragms is normal to sr 9 line

CORNER DETAIL

$\mathrm{L}=$ length between diaphragms (or length of "bay") S = girder spacing $\mathrm{N}_{100}=$ number of cracks equal to get 100% cracking severity $=\mathrm{L} / 2 \mathrm{ft}$ (transverse crack spaced at 2 ft on ce								
$\begin{aligned} \mathrm{N}_{100} & =\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse } \\ \mathrm{N}_{\mathrm{cr}} & =\text { number of leaching cracks counted during visual inspection } \\ \% & =\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) } \end{aligned}$							Avg. $=$ 8% Min. $=$ 0% Max. $=$ 45%	
Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	N_{cr}	N_{100}	\%
1	1	A	B	34.92	7.00	2	17	10\%
1	1	B	C	34.92	7.00	8	17	45\%
1	1	C	D	34.92	7.00	4	17	25\%
1	1	D	E	34.92	7.00	6	17	35\%
1	1	E	F	34.92	7.00	4	17	25\%
1	2	A	B	34.92	7.00	0	17	0\%
1	2	B	C	34.92	7.00	0	17	0\%
1	2	C	D	34.92	7.00	0	17	0\%
1	2	D	E	34.92	7.00	0	17	0\%
1	2	E	F	34.92	7.00	0	17	0\%
1	3	A	B	34.92	7.00	2	17	10\%
1	3	B	C	34.92	7.00	0	17	0\%
1	3	C	D	34.92	7.00	1	17	5\%
1	3	D	E	34.92	7.00	1	17	5\%
1	3	E	F	34.92	7.00	1	17	5\%
1	4	A	B	34.92	7.00	1	17	5\%
1	4	B	C	34.92	7.00	0	17	0\%
1	4	C	D	34.92	7.00	1	17	5\%
1	4	D	E	34.92	7.00	2	17	10\%
1	4	E	F	34.92	7.00	1	17	5\%
1	5	A	B	34.92	7.00	0	17	0\%
1	5	B	C	34.92	7.00	0	17	0\%
1	5	C	D	34.92	7.00	1	17	5\%
1	5	D	E	34.92	7.00	1	17	5\%
1	5	E	F	34.92	7.00	1	17	5\%

BRIDGE 5/229 (MELLEN STREET COUPLET)

Bridge \#	5/229		Name	Mellen Street Coup	Bridge	Structu		473B
Contract \#	8473	Region	SW	Project Engineer	Colin Newell	Performance Deck	ete?	YES
Contractor Scarella Bros.	Scarella Bros.			Concrete Supplier	Miles Sand \& Gravel	Deck Placement	4/18/2014	
Single-Span (154'), 5-WF74G Girders, 2-Lanes (43' wide roadway)								

CONTENTS

1. Layout Plan Sheet
2. Mix Design Summary
3. Concrete Mix Design Form
4. Concrete Test Results
5. Field Notes
6. Crack Summary
7. Crack Intensity Diagram

Washington State

Department of Transportation

Mix Design (WSDOT Form 350-040)			
Water (max) $=223$ lbs/cy \quad w/c $=0.40 \quad$ max			
Cementitious Materials	Lbs/cy	Source	Type, Class or Grade
cement	464	Ash Grove	Type I-II
fly ash	116	Lafarge	Type F
slag			
latex			
microsilica			Product
Concrete Admixtures	oz/cy	Manufacturer	
air entrainment	$1-15$	BASF	MB-AE-90
water reducer			Glenium 7500
HR water reduce	$23-40$	BASF	
set retarder			MasterLife SRA
shrink. reducer	32	BASF	

Concrete Test Results			
compressive strength @ 28 days	5,560	psi	
modulus of elasticity	$5,230,000$	psi	
permeability @ 56 days	1,129	coulombs	
mix design density	145.5	$\mathrm{lb} / \mathrm{cf}$	

Shrinkage Test Results		
Dry Age	\% Length	
(days)	Change	
0	0.0000\%	
4		
7	-0.0100\%	
14	-0.0180\%	
21	-0.0230\%	
28	-0.0280\%	
56		

Aggregate						
	Comp. 1	Comp. 2	Comp. 3	Comp. 4	Comp. 5	
WSDOT Pit \#	B-329	B-329	B-329	B-333		
Grading	No. 4	No. 57	No. 8	Class 2		
\% Total	15.4%	33.3%	16.0%	35.3%		
Lbs/cy	480	1040	500	1100		
ASR Mitigation None Required						

Notes
Very Similar Mix Design as:
${ }^{*}$ Bridge 5/232NCD
${ }^{*}$ Bridge 5/232SCD
${ }^{*}$ Bridge 5/234W

This mix is to be used in the following Bid Item No(s):

$$
86 \quad 8 \quad 87
$$

Concrete Class: (check one only)

3000 4000 区 4000 D $\square 400 \stackrel{a}{P}^{a}$
$\square 4000 \mathrm{~W}$Concrete OverlayCement Concrete PavementOther Shrinkage Reducer

Remarks: \qquad

Mix Design No. \qquad 0444AFL2 \qquad Plant No. 222

Cementitious Materials	Source	Type, Class or Grade	Sp. Gr.	Lbs/cy
Cement	A.sh Grove	I-II	3.15	464
Fly Ash				
GGBF (Slag)	Lafarge	F	2.54	116
Latex				
Mlcrosilica				

Concrete Admlxtures	Manufacturer	Product	Type	Est. Range (oz/cy)
Air Entrainment	BASF	MB-AE-90		$1-15$
Water Reducer		Glenium 7500	F	
High-Range Water Reducer	BASF			$23-40$
Set Retarder		MasterLife SRA		
Other Shrinkage Reducer	BASF			
Water (Maximum) 233				

Water Cementitious Ratio (Maximum) 0.40
Mix Design Denslty 145.5 $\mathrm{lbs} / \mathrm{ff}^{\mathrm{d}}$

Design Performance	$\mathbf{1}$	$\mathbf{2}$	3	4	5	Average f
28 Day Compressive Strength (cylinders) psi	4,920	5,420	5,330	6,290	5,860	5,560
14 Day Flexurald Strength (beams) psi						

Agency Use Only (Check appropirate Box)

\square This Mix Design MEETS CONTRACT SPECIFICATIONS and may be used on the bid items noted above
\square This MIx Design DOES NOT MEET CONTRACT SPECIFICATIONS and is being returned for corrections

Mix Design No.
0444AFL2
Plant No. 222

Aggregate Information

Concrete Aggregates	Component 1	$\underset{2}{C o m p o n e n t}$	$\underset{3}{\text { Component }}$	$\underset{4}{\text { Component }}$	$\underset{5}{\text { Component }}$	Combined Gradation
WSDOT Pit No.	B-333	B-333	B-333	B-333		
WSDOT ASR 14-day Results (\%) ${ }^{\text {b }}$	\square Yes \triangle No	\square Yes \boxtimes No	\square Yes \triangle No	\square Yes \boxtimes No	\square Yes \square No	
Grading ${ }^{\text {c }}$	4	57	8	Class 2		
Percent of Total Aggregate						100\%
Specific Gravity	2.71	2.69	2.68	2.65		
Lbs/cy (ssd)	480	1040	500	1100		

Percent Passing

2 inch	100	100	100	100		100
1-1/2 inch	100	100	100	100		100
1 inch	32.6	100	100	100	89.6	
$3 / 4$ inch	1.6	80.0	100	100	78.2	
$1 / 2$ inch	0.4	30.1	100	100	61.4	
$3 / 8$ inch	0.2	7.8	88.6	100		
No. 4	0.1	0.3	22.4	99.4	38.8	
No. 8	0.1	0.2	1.4	90.2		32.1
No. 16	0.1	0.1	0.2	70	24.8	
No. 30	0.1	0.1	0.2	44.1		15.6
No. 50	0.1	0.1	0.2	20		
No. 100	0.1	0.1	0.2	6		
No. 200	0.1	0.1	0.2	1.7		

Fineness Modulus: $\mathbf{2 . 7 0}$
(Required for Class 2 Sand)
ASR Mitigation Method Proposed ${ }^{\text {b }}$:

Notes:

a Required for Class 4000D and 4000P mixes.
b Alkali Silica Reacilvity Mitlgation is required for sources with expansions over 0.20% - Incidate method for ASR mitigatlon. For expansion of $0.21 \%-0.45 \%$, acceptable mitigation can be the use of low alkall cement or 25% type F fly ash. Any other proposed mittigation method or for pits with greater than 0.45% expansion, proof of mitigating measure, either ASTM C1260 / AASHTO T303 test results must be attached.
If ASTM C 1293 testing has been submitted indicating 1-year expansion of 0.04% or less, mitigation is not required.
c AASHTO No. 467, 57, 67, 7, 8; WSDOT Class 1, Class 2; or combined gradation. See Standard Specification 9-03.1.
d Required for Cement Concrete Pavements.
e Attach test results Indicating conformance to Standard Specification 9-25.1.
f Actual Average Strength as determined from testing or estimated from ACl 211.
DOT Form 360-040 EF
Revised 0/06

As requested, Carlson Testing inc. has completed modulus of elasticity testing on the 6×12 concrete cylinders referenced above. The lab cylinders were cast on September 23, 2013 and delivered to our Tigard facility. Twenty eight day modulus testing was done on October 21, 2013. Following are the results:

Modulus of Elasticity Testing: ASTM C469

AGE OF SPECIMEN	AVE PSI	MODULUS - CYL A	MODULUS $-C Y L$ B	AVERAGE MODULUS ELASTICITY
28 DAYS	4160	$5.18 \mathrm{E}+06$	$5.28 \mathrm{E}+06$	$5.23 E+06$

*Attached are the modulus graphs
Our reports pertain to the material tested/inspected only. Information contained herein is not to be reproduced, except in full, without prior authorization from this office. Under all circumstances, the information contained in this report is provided subject to all terms and conditions of CTI's General Conditions in effect at the time this report is prepared. No party other than those to whom CTI has distributed this report shall be entitled to use or rely upon the information contained in this document.

If there are any further questions regarding this matter, please do not hesitate to contact this office.
Respectfully submitted,

Greg Leeper
Project Manager
(Attachments)

ASH GROVE CEMENT COMPANY

TECIINICALSERVICE

Portland Lab
3737 N. Port Center Way
Portland, OR 97217

ASTM C 157 - Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete

Subject

On 2/12/2013 weperformed a laboratory trial batch for drying shrinkage testing for Mr. Keith Muhich with Miles Sand \& Gravel.

Summary

The concrete laboratory trial batch was prepared according to your mix design 4000D with 0.25 gallon of SRA per cubic yard. The beams were cured in standard water bath for 28 days prior to drying exposure.

Test Results

Length Change, \%: Age, days PDX-021213-1

Initial	0.000%
0	0.000%
7	-0.010%
14	-0.018%
21	-0.023%
28	-0.028%

Submitted by,

Corid Buy

David Burg
Technical Services Manager

[^0] manlpulation, or copying of tils report, is adrictly prohbiled

Ash Grove Technical Center
11011 Cody Street, Suite 125
Overland Park, Kan. 66210
July 26, 2013 - Preliminary Report
August 26, 2013 - Final Report

Report No.: R18785
Work Order No.: WO-130315

SUBIECT

On July 8, 2013, a request for technical service was issued on behalf of Mr. Keith Muhich of Miles Sand and Gravel in Auburn, Washington. Mr. Dave Burg requested that the Technical Center conduct AASHTO T 277 testing on the two supplied cylinders, 1 @ 28 days, and $2 @ 56$ days of age.

SAMPLEIDENTIFICATION

Sample No.

Sample Description

S-130851
(3) 4x8 Concrete Cylinders, Cast 6-27-13, labeled WVSDOT 4000D mix design.

Date Received
07/08/2013

TEST RESULTS

AASHTO T 277 - Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration Accelerated Cure

		Charge	Corrected	Qualitative	Date	
Sample No.	Diameter, in	Passed, C	Charge, C	Equivalent	of Test	Age, days
S-130851 *	4.03	987	855	Very Low	07/25/2013	28

* Acc. Curing started at 11 days of age.

Cylinders were received at 11 days of age.

AASHTO T 277-Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration Standard Cure

Sample No	Diameter. in	Charge Passed, C	Corrected Charge, C	Qualitative Equivalent	Date of Test	Age, days
S-130851	4.02	1,297	1,129	Low	$08 / 22 / 2013$	56
S-130851	4.03	1,236	$\mathbf{1 , 0 7 0}$	Low	$08 / 22 / 2013$	56

$$
\text { Note: Corrected Charge }=\text { Charge Passed } X(95 / \text { diameter in } \mathrm{mm})^{2}
$$

$$
1 \mathrm{in} .=25.4 \mathrm{~mm}
$$

Chloride Ion Penetrability Based on Charge Passed

(Excerpted from AASHTO T 277)

Charge Passed (coulombs)

$>4,000$
$2,000-4,000$
$1,000-2,000$
100-1,000
<100

Chloride Ion Penetrability
High
Moderate
Low
Very Low
Negligible

METHODOLOGY

AASHTO T 277 Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration by Bruce Payne.

Submitted by,

Kist Fireman

Kristen Freeman

Gcologist/Petrographet
The statements in this report are based on information provided by our customer (You), on laboratory tests and observations. They are intended solely for informational use by our customer. This report is not intended for publication or other distribution, and does not constitute, nor may it be used as any form of expert opinion. By providing these test results to You, Ash Grove makes no express or implied warranties of any kind conceming the results or conclusions of its material testing. If You require such information, You should consult an independent commercial testing laboratory. Any unauthorized use, disclosure, manipulation, or copying of this report, in any form, is strictly prohibited.

Bridge \# 5/229
Bridge Name Mellen Street Couplet Bridge
Structure ID \qquad 0018473B
Contract \# 8473 Region SW
Contractor Scarella Bros. \qquad Performance Deck Concrete? YES

Bridge Description Single-Span (154'), 5-WF74G Girders, 2-Lanes (43' wide roadway)

$$
\begin{aligned}
& \text { L = length between diaphragms (or length of "bay") } \\
& \mathrm{S}=\text { girder spacing }
\end{aligned}
$$

$$
\mathrm{N}_{100}=\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse crack spaced at } 2 \mathrm{ft} \text { on center) }
$$

$$
\begin{aligned}
\mathrm{N}_{\mathrm{cr}} & =\text { number of leaching cracks counted during visual inspection } \\
\% & =\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) }
\end{aligned}
$$

$$
\begin{array}{ll}
\hline \text { Avg. }= & 0 \% \\
\text { Min. }= & 0 \%
\end{array}
$$

Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	$\mathrm{N}_{\text {cr }}$	Max. $=5 \%$	
1	1	A	B	37.17	9.25	0	19	0%
1	1	B	C	37.17	9.25	0	19	0%
1	1	C	D	37.17	9.25	1	19	5%
1	1	D	E	37.17	9.25	0	19	0%
1	2	A	B	37.17	9.25	\#N/A	19	\#N/A
1	2	B	C	37.17	9.25	\#N/A	19	\#N/A
1	2	C	D	37.17	9.25	\#N/A	19	\#N/A
1	2	D	E	37.17	9.25	\#N/A	19	\#N/A
1	3	A	B	37.17	9.25	0	19	0%
1	3	B	C	37.17	9.25	0	19	0%
1	3	C	D	37.17	9.25	0	19	0%
1	3	D	E	37.17	9.25	0	19	0%
1	4	A	B	37.17	9.25	0	19	0%
1	4	B	C	37.17	9.25	0	19	0%
1	4	C	D	37.17	9.25	0	19	0%
1	4	D	E	37.17	9.25	0	19	0%

CRACKING INTENSITY ~ BRIDGE 5/229

100\% = CRACK EVERY 2 FT.
$X X X=$ CRACKS NOT COUNTED DUE TO LIMITED ACCESS

BRIDGE 101/31 (MIDDLE NEMAH RIVER)

Bridge Description Single-Span, 5-WF50G Girders (127' bridge length), 2-Lanes (36' wide roadway)

CONTENTS

1. Layout Plan Sheet
2. Mix Design Summary
3. Concrete Mix Design Form
4. Concrete Test Results
5. Field Notes
6. Crack Summary
7. Crack Intensity Diagram

Washington State
 Department of Transportation

Bridge Description Single-Span, 5-WF50G Girders (127' bridge length), 2-Lanes (36' wide roadway)

Mix Design (WSDOT Form 350-040)			
Water (max) $=230$ lbs/cy \quad w/c $=0.38 \quad \max$			
Cementitious Materials	Lbs/cy	Source	Type, Class or Grade
cement	460	Ashgrove	Type I-II
fly ash	150	Lafarge	Type F
slag			
latex			
microsilica			Product
Concrete Admixtures	oz/cy	Manufacturer	Micro Air
air entrainment	$1-15$	BASF	
water reducer			Glenium 7500
HR water reduce	$20-30$	BASF	Masterlife
set retarder			
shrink. reducer	$120-140$	BASF	

Concrete Test Results			
compressive strength @ 28 days	5,691	psi	
modulus of elasticity	$4,012,122$	psi	
permeability @ 56 days	1,677	coulombs	
mix design density	150.1	$\mathrm{lb} / \mathrm{cf}$	

Shrinkage Test Results			
Dry Age	\% Length		
(days)	Change		
0	0.0060\%		
4	-0.0030\%		
7	-0.0060\%		
14	-0.0100\%		
21	-0.0160\%		
28	-0.0180\%		
56			

Aggregate						
	Comp. 1	Comp. 2	Comp. 3	Comp. 4	Comp. 5	
WSDOT Pit \#	PS-X-130	PS-X-130	PS-X-130			
Grading	$\# 67$	$\# 4$	Class II			
\% Total	42.0%	20.0%	38.0%			
Lbs/cy	1350	650	1213			
ASR Mitigation None Required						

Notes
Same Mix Design as:
${ }^{*}$ Bridge 6/8
${ }^{*}$ Bridge 101/44
${ }^{\text {}}$ Bridge 105/4
* Bridge 105/3
if swell of concrete speciman is included, total change in length
at 28 days drying is 240 microstrain $(0.0060 \%$ + $0.0180 \%)$

| Contractor
 SB Structures | Submitted By
 Bayview Redi-Mix, Inc | Date
 $07 / 22 / 2013$ |
| :--- | :--- | :--- | :--- |
| Concrete Supplier
 Bayview Redi Mix, Inc | Plant Location
 Raymond 041, Aberdeen 011 | |
| Contract Number
 8344 | Contract Name
 Middle Nemah River Bridge Replacement Bridge | |

This mix is to be used in the following Bid Item No (s):
Concrete Class: (check one only)
$\square 3000 \square 4000$ 囚4000 ${ }^{\text {D }}$
$\square 4000 \stackrel{a}{P}$4000WConcrete Overlay
d \square Other Shrinkage

Remarks: \qquad

Mix Design No. WSDT4DS130 Plant No. 041, 011

Cementitious Materials	Source	Type, Class or Grade	Sp. Gr.	Lbs/cy
Cement	Ashgrove, Seattle, WA	Type I-II	3.15	460
Fly Ash ${ }^{\text {a }}$	Lafarge, Centralia, WA	Type F	2.58	150
GGBFS (Slag)				
Latex				
Microsilica				

Concrete Admixtures	Manufacturer	Product	Type	Est. Range (oz/cy)
Air Entrainment	BASF Cleveland, OH	Micro Air		$1-15$
Water Reducer				
High-Range Water Reducer	BASF Cleveland, OH	Glenium 7500	F	$20-30$
Set Retarder				
Other Shrinkage	BASF Cleveland, OH	Masterlife		$120-140$

Water (Maximum) 230	lbs/cy		Is any of the water Recycled or Reclaimed?			$\square \mathrm{Yes}$ e ${ }^{\text {e }}$,
Water Cementitious Ratio (Maximum) . 38			Mix Design Density			$\mathrm{lbs} / \mathrm{cf}{ }^{\text {d }}$
Design Performance	1	2	3	4	5	Average ${ }^{f}$
28 Day Compressive Strength (cylinders) psi	5,775	5,766	5,623	5,561	5,730	5,691
14 Day Flexurald Strength (beams) psi						

Agency Use Only (Check appropirate Box)

区 This Mix Design MEETS CONTRACT SPECIFICATIONS and may be used on the bid items noted above

\square This Mix Design DOES NOT MEET CONTRACT SPECIFICATIONS and is being returned for corrections

DOT Form 350-040 EF Revised 6/06

Distribution: Original - Contractor
Copies To - State Materials Lab-Structural Materials Eng. ; Regional Materials Lab; Project Inspector

Mix Design No.
WSDT4DS130
Plant No. \qquad
Aggregate Information

Concrete Aggregates	$\begin{gathered} \text { Component } \\ 1 \end{gathered}$	$\begin{gathered} \text { Component } \\ 2 \end{gathered}$	$\begin{gathered} \text { Component } \\ 3 \\ \hline \end{gathered}$	$\underset{4}{\text { Component }}$	$\underset{5}{\text { Component }}$	Combined Gradation
WSDOT Pit No.	PS-X-130	PS-X130	PS-X-130			
WSDOT ASR 14-day Results (\%) ${ }^{\text {b }}$	\Yes \square No	\ Yes \square No	\Yes $\square \mathrm{No}$	\square Yes \square No	\square Yes \square No	
Grading ${ }^{\text {c }}$	$\begin{aligned} & \text { AAASHTO } \\ & \# 67 \end{aligned}$	$\begin{aligned} & \text { AAASHTO } \\ & \# 4 \end{aligned}$	Class II			
Percent of Total Aggregate	42	20	38			100\%
Specific Gravity	2.825	2.825	2.747			
Lbs/cy (ssd)	1350	650	1213			

Fineness Modulus: 3.14

ASR Mitigation Method Proposed ${ }^{\text {b }}:$ Not Required for this Source

Notes:

a Required for Class 4000D and 4000P mixes.
b Alkali Silica Reactivity Mitigation is required for sources with expansions over 0.20% - Incidate method for ASR mitigation. For expansion of $0.21 \%-0.45 \%$, acceptable mitigation can be the use of low alkali cement or 25% type F fly ash. Any other proposed mitigation method or for pits with greater than 0.45% expansion, proof of mitigating measure, either ASTM C1260 / AASHTO T303 test results must be attached.
If ASTM C 1293 testing has been submitted indicating 1 -year expansion of 0.04% or less, mitigation is not required.
c AASHTO No. 467, 57, 67, 7, 8; WSDOT Class 1, Class 2; or combined gradation. See Standard Specification 9-03.1.
d Required for Cement Concrete Pavements.
e Attach test results indicating conformance to Standard Specification 9-25.1.
f Actual Average Strength as determined from testing or estimated from ACl 211.

Lafarge North America Concrete Lab
5400 W Marginal Way SW
Seattle, WA. 98106
Report To: Bayview Ready Mix
Date: July 9, 2013
Attention: Quality Control Personnel
Subject: Bayview Ready Mix 4000D - WSDOT Performance Deck Mix
Project: 4000D Mix of Bayview Ready Mix
Date Sampled: June 11, 2013 by Bayview on site

> Strength c-31
> $\mathbf{6 \times 1 2}-180000 \mathrm{lbs}=6370 \mathrm{psi}$
> $\mathbf{6 \times 1 2}-\mathbf{1 8 4 5 6 0} \mathrm{lbs}=6530 \mathrm{psi}$

Modulus of Elasticity c-469

4,012,122 psi

Rout s.

Rob Shogren, P.E, Ph.D.
Technical Service Engineer
Lafarge North America

Ash Grove Technical Center

11011 Cody Street, Suite 125
Overland Park, Kan. 66210
December 12, 2012

Report Number:
R18439
Work Order Number: WO-120489

SUBJECT

On October 4, 2012 a request for technical service was issued on behalf of Marvin Prince of Bay View Redi-Mix in Aberdeen, Washington. Mr. Dave Burg requested that the Technical Center batch concrete with the submitted aggregates and cast specimens for rapid chloride penetrability (AASHTO T 277) and drying shrinkage (ASTM C 157) testing.

SAMPLE IDENTIFICATION

Sample No. Sample Description

S-120817
(1) 3.5-gal. bucket of Lafarge Centralia Plant Class F fly ash, Centralia, Oregon

Date Received
S-121541
(3) 5-gal. buckets of Ash Grove Cement Company Seattle Plant T I/II Portland Cement

03/26/2012
S-122202
(2) 5-gallon buckets of Bay View Redi-Mix fine aggregate, Pit \# X-130

07/17/2012
S-122203
(2) 5-gallon buckets of Bay View Redi-Mix coarse aggregate, 3/4-in. to No. 4, Pit \# X-130

10/02/2012
(2) 5-gallon buckets of Bay View Redi-Mix coarse aggregate, 1.5 -in. to $3 / 4$-in., Pit \# X-130

10/02/2012
S-122204
S-122225 (1) 3.5-gal. bucket of BASF Master Life SRA 20
10/02/2012
10/04/2012
S-122302
(1) $3.5-\mathrm{gal}$. bucket of BASF Glenium 7500

10/11/2012
S-122303
(1) 3.5-gal. bucket of BASF Micro-Air

10/11/2012

SUMMARY

Concrete mix proportions were provided by Mr. Burg. A concrete trial batch was performed with the submitted materials, and specimens were cast in accordance with applicable standards. Four cylinder specimens were cast for determination of chloride penetrability per AASHTO T 277 testing and three prisms were cast for determination of drying shrinkage per ASTM C 157.

One of the cylinder specimens was subjected to accelerated curing conditions and tested at 28 -days of age. The remaining three specimens were cured in standard conditions. Of those, one was tested at 28 -days of age and two were tested at 56 -days of age.

The concrete drying shrinkage prisms were wet-cured for four weeks prior to their exposure to drying conditions $\left(23^{\circ} \mathrm{C}\right.$ and $50 \% \mathrm{RH})$. Their length change was monitored for an additional four weeks while stored in drying conditions.

TEST RESULTS

ASTM C 192 - Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory

Concrete Mixture Proportions
Trial Mix Results Calculated to $1 y d^{3}$
S-Number Description
S-121541 AG Seattle Type I/ II
S-120817 Lafarge Centralia Class F
S-122202 Pit X-130 Fine Agg.
S-122204 Pit X-130 1.5 to $3 / 4$ Agg.
S-122203 Pit X-130 3/4 to No. 4 Hg.
--- Overland Park Municipal

- Air

Admixtures
S-Number Description
S-122303 BASF Micro-Air
S-122302 BASF Glenium 7500
S-122225 BASF Master Life SRA 20

4,000 PSI Mix

D-101112-01
StG Mass, lbs Vol.Cuft
$\begin{array}{lll}3.15 & 462 & 2.35\end{array}$
$\begin{array}{lll}2.58 & 151 & 0.94\end{array}$
$\begin{array}{lll}2.75 & 1,217 & 7.09\end{array}$
$\begin{array}{lll}2.83 & 652 & 3.69\end{array}$
$\begin{array}{lll}2.83 & 1,357 & 7.68\end{array}$
$1.00 \quad 233 \quad 3.73$

- $\quad 5.6 \% \quad 1.51$

Totals: $\quad 4,072 \quad 27.00$

Plastic Properties
Slump, in:
Unit Weight, lbs/cuft:
Air Content (Calculated), \%:
w/ cm ratio:
Concrete 'Temperature, F:

Dosage, oz/cwt
1.0
4.0
21.0

D-101112-01
6.75
150.8
5.6
0.38
74°

AASHTO T 277 - Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration Accelerated Cure

Sample No.	Diameter, in.	Charge Passed, C	Corrected Charge, C	Qualitative Equivalent	Equal, days

AASHTO T 277 - Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration Standard Cure

Sample No.	Diameter, in.	Charge Passed, C	Corrected Charge. C	Qualitative D-101112-01	4.00	

ASTMC 157 Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete

Material:		Concrete
'Number of Specimens per Mixture:		4
Size of Specimens, in:	Length:	10.0
	Width:	4.0
	Height:	4.0
Method of Consolidation:		4
Period of Moist Curing:		28 -days
Drying Exposure Conditions:		$23^{\circ} \mathrm{C}, 50 \% \mathrm{RH}$
Length Change	Reading	D-101112-01
	Initial	0.000%
	0-days dry	0.006%
	4-days dry	-0.003%
	7-days dry	-0.006%
	14-days dry	-0.010%
	21-days dry	-0.016%
	28-days dry	-0.018%

Bridge \#	101/	Bridge Name		Middle Nemah Rive		Structur	0018464A	
Contract \#	8344	Region	SW	Project Engineer	Lori Figone	Performance Deck	rete?	YES
Contractor	SB Structures			Concrete Supplier	Bayview Redi Mix, Inc	Deck Placement	1/14/2014	

Bridge Description Single-Span, 5-WF50G Girders (127' bridge length), 2-Lanes (36' wide roadway)

$$
\begin{aligned}
& \text { L = length between diaphragms (or length of "bay") } \\
& \mathrm{S}=\text { girder spacing }
\end{aligned}
$$

$$
\mathrm{N}_{100}=\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse crack spaced at } 2 \mathrm{ft} \text { on center) }
$$

$$
\begin{aligned}
\mathrm{N}_{\mathrm{cr}} & =\text { number of leaching cracks counted during visual inspection } \\
\% & =\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) }
\end{aligned}
$$

Avg. $=$	0%
Min. $=$	0%

Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	$\mathrm{N}_{\text {cr }}$	N_{100}	$\%$
1	1	A	B	31.75	7.58	0	16	0%
1	1	B	C	31.75	7.58	0	16	0%
1	1	C	D	31.75	7.58	0	16	0%
1	1	D	E	31.75	7.58	0	16	0%
1	2	A	B	31.75	7.58	0	16	0%
1	2	B	C	31.75	7.58	0	16	0%
1	2	C	D	31.75	7.58	0	16	0%
1	2	D	E	31.75	7.58	0	16	0%
1	3	A	B	31.75	7.58	0	16	0%
1	3	B	C	31.75	7.58	0	16	0%
1	3	C	D	31.75	7.58	0	16	0%
1	3	D	E	31.75	7.58	0	16	0%
1	4	A	B	31.75	7.58	0	16	0%
1	4	B	C	31.75	7.58	0	16	0%
1	4	C	D	31.75	7.58	0	16	0%
1	4	D	E	31.75	7.58	0	16	0%

CRACKING INTENSITY ~ BRIDGE 101/31

[^1]| BRIDGE NUMBER | $101 / 31$ |
| :--- | :---: |
| BRIDGE NAME | MIDDLE NEMAH RIVER |
| INSPECTION DATE | $5 / 7 / 2015$ |
| DECK CONCRETE | PERFORMANCE BASED |

APPENDIX B

TWO-SPAN PRESTRESSED GIRDER BRIDGES

BRIDGE 16/7S-E (SOUTH SPRAGUE RAMP) BRIDGE 195/117 (CHENEY-SPOKANE ROAD OVER US 195)

BRIDGE 395/442W (US 395 OVER US 2)
BRIDGE 16/3W (SR 16 OVER HOV)
BRIDGE 2/8.5N-W (BICKFORD AVE OVER US 2)

BRIDGE 395/441N-E (N-E RAMP OVER N-N RAMP)

BRIDGE 16/7S-E (SOUTH SPRAGUE RAMP)

Bridge Description 2-Span (154' / 148'), 4-WF83G Girders (320' bridge length), 1-Lane (27' wide roadway)

CONTENTS

1. Layout Plan Sheet
2. Field Notes
3. Crack Summary
4. Crack Intensity Diagram

Washington State

Department of Transportation
Bridge \# 16/7S-E Bridge Name South Sprague Ramp

Structure ID \qquad
Contract \# \qquad Project Engineer Jon Deffenbacher
\qquad Performance Deck Concrete? \qquad
Contractor \qquad Concrete Supplier \qquad Deck Placement ≈ 2010

Bridge Description 2-Span (154' / 148'), 4-WF83G Girders (320' bridge length), 1-Lane (27' wide roadway)

$$
\begin{aligned}
& \mathrm{L}=\text { length between diaphragms (or length of "bay") } \\
& \mathrm{S}=\text { girder spacing }
\end{aligned}
$$

$$
\mathrm{N}_{100}=\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse crack spaced at } 2 \mathrm{ft} \text { on center) }
$$

$$
\begin{aligned}
\mathrm{N}_{\mathrm{cr}} & =\text { number of leaching cracks counted during visual inspection } \\
\% & =\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) }
\end{aligned}
$$

Avg. $=59 \%$

Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	$\mathrm{N}_{\text {cr }}$	N_{100}	$\%$
1	1	A	B	38.50	6.92	8	19	40%
1	1	B	C	38.50	6.92	7	19	35%
1	1	C	D	38.50	6.92	9	19	45%
1	2	A	B	38.50	6.92	12	19	65%
1	2	B	C	38.50	6.92	13	19	70%
1	2	C	D	38.50	6.92	15	19	80%
1	3	A	B	38.50	6.92	14	19	75%
1	3	B	C	38.50	6.92	11	19	60%
1	3	C	D	38.50	6.92	12	19	65%
1	4	A	B	38.50	6.92	14	19	75%
1	4	B	C	38.50	6.92	18	19	95%
1	4	C	D	38.50	6.92	18	19	95%
2	1	A	B	37.00	6.92	14	19	75%
2	1	B	C	37.00	6.92	14	19	75%
2	1	C	D	37.00	6.92	14	19	75%
2	2	A	B	37.00	6.92	11	19	60%
2	2	B	C	37.00	6.92	9	19	45%
2	2	C	D	37.00	6.92	10	19	55%
2	3	A	B	37.00	6.92	8	19	40%
2	3	B	C	37.00	6.92	9	19	45%
2	3	C	D	37.00	6.92	7	19	35%
2	4	A	B	37.00	6.92	8	19	40%
2	4	B	C	37.00	6.92	6	19	30%
2	4	C	D	37.00	6.92	9	19	45%

CRACKING INTENSITY ~ BRIDGE 16/7S-E
100% = CRACK EVERY 2 FT.

BRIDGE 195/117 (CHENEY-SPOKANE ROAD OVER US 195)

CONTENTS

1. Layout Plan Sheet
2. Mix Design Summary
3. Field Notes
4. Crack Summary
5. Crack Intensity Diagram

Washington State

Department of Transportation

Bridge \#	195/117	Bridge Name		Cheney-Spokane R	over US 195	_ Structure ID 0018378A	Structure ID	0018378A	
Contract \#	8378	Region	ER	Project Engineer Chad Simonson		Performance Deck Concrete? \qquad Deck Placement 10/23/2013			
Contractor	Selland Construction			Concrete Supplier					

Cridge \# 195/117 Bridge Name

Cheney-Spokane Road over US 195 Structure ID \qquad
Contract \# \qquad Project Engineer Chad Simonson Performance Deck Concrete? Yes
Contractor \qquad Concrete Supplier Deck Placement \qquad
Bridge Description 2-Span (113' / 113"), 5-WF50G Girders (226' Bridge Length), 2-Lanes (48' wide roadway)

$\begin{aligned} & \text { L = length between diaphragms (or length of "bay") } \\ & \text { S = girder spacing } \end{aligned}$								
$\mathrm{N}_{100}=$ number of cracks equal to get 100% cracking severity $=\mathrm{L} / 2 \mathrm{ft}$ (transverse crack spaced at 2 ft on c								
$\begin{aligned} \mathrm{N}_{\mathrm{cr}} & =\text { number of leaching cracks counted during visual inspection } \\ \% & =\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) } \end{aligned}$							$\begin{aligned} & \text { Avg. = } \\ & \text { Min. }= \end{aligned}$	$\begin{gathered} \hline 10 \% \\ 0 \% \end{gathered}$
Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	N_{cr}	N_{100}	\%
1	1	A	B	36.85	10.00	0	18	0\%
1	1	B	C	36.85	10.00	0	18	0\%
1	1	C	D	36.85	10.00	1	18	5\%
1	1	D	E	36.85	10.00	1	18	5\%
1	2	A	B	36.85	10.00	2	18	10\%
1	2	B	C	36.85	10.00	1	18	5\%
1	2	C	D	36.85	10.00	1	18	5\%
1	2	D	E	36.85	10.00	1	18	5\%
1	3	A	B	36.85	10.00	3	18	15\%
1	3	B	C	36.85	10.00	6	18	35\%
1	3	C	D	36.85	10.00	5	18	30\%
1	3	D	E	36.85	10.00	4	18	20\%
2	1	A	B	36.85	10.00	0	18	0\%
2	1	B	C	36.85	10.00	1	18	5\%
2	1	C	D	36.85	10.00	2	18	10\%
2	1	D	E	36.85	10.00	2	18	10\%
2	2	A	B	36.85	10.00	3	18	15\%
2	2	B	C	36.85	10.00	2	18	10\%
2	2	C	D	36.85	10.00	2	18	10\%
2	2	D	E	36.85	10.00	1	18	5\%
2	3	A	B	36.85	10.00	1	18	5\%
2	3	B	C	36.85	10.00	2	18	10\%
2	3	C	D	36.85	10.00	1	18	5\%
2	3	D	E	36.85	10.00	2	18	10\%

CRACKING INTENSITY ~ BRIDGE 195/117
$100 \%=$ CRACK EVERY 2 FT .

BRIDGE 395/442W (US 395 OVER US 2)

CONTENTS

1. Layout Plan Sheet
2. Field Notes
3. Crack Summary
4. Crack Intensity Diagram

Bridge \#	395/442W	Bridge Name		US 395 SB over US 2			0017610E	
Contract \#	7610	Region	ER	Project Engineer Bob Hilmes		Performance Deck		No
Contractor	Graham Construction			Concrete Supplier		Deck Placement $\quad \approx 2011$		

Bridge Description 2-Span (120' / 120"), 4-WF58G Girders (240' bridge length), 2-Lanes (38' wide roadway)

$$
\begin{aligned}
& \mathrm{L}=\text { length between diaphragms (or length of "bay") } \\
& \mathrm{S}=\text { girder spacing }
\end{aligned}
$$

$$
\mathrm{N}_{100}=\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse crack spaced at } 2 \mathrm{ft} \text { on center) }
$$

$$
\begin{aligned}
\mathrm{N}_{\mathrm{cr}} & =\text { number of leaching cracks counted during visual inspection } \\
\% & =\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) }
\end{aligned}
$$

Avg. $=10 \%$

Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	$\mathrm{N}_{\text {cr }}$	Max. $=30 \%$	
1	1	A	B	40.00	10.53	3	20	15%
1	1	B	C	40.00	10.53	4	20	20%
1	1	C	D	40.00	10.53	0	20	0%
1	2	A	B	40.00	10.53	1	20	5%
1	2	B	C	40.00	10.53	0	20	0%
1	2	C	D	40.00	10.53	0	20	0%
1	3	A	B	40.00	10.53	4	20	20%
1	3	B	C	40.00	10.53	4	20	20%
1	3	C	D	40.00	10.53	2	20	10%
2	1	A	B	40.00	10.53	5	20	25%
2	1	B	C	40.00	10.53	6	20	30%
2	1	C	D	40.00	10.53	2	20	10%
2	2	A	B	40.00	10.53	0	20	0%
2	2	B	C	40.00	10.53	3	20	15%
2	2	C	D	40.00	10.53	1	20	5%
2	3	A	B	40.00	10.53	0	20	0%
2	3	B	C	40.00	10.53	0	20	0%
2	3	C	D	40.00	10.53	0	20	0%

CRACKING INTENSITY ~ BRIDGE 395/442W

100% = CRACK EVERY 2 FT .

BRIDGE NUMBER	395/442W
BRIDGE NAME	US 395 OVER US 2
INSPECTION DATE	5/21/2015
DECK CONCRETE	TRADITIONAL

CONTENTS

1. Layout Plan Sheet
2. Mix Design Summary
3. Concrete Mix Design Form
4. Concrete Test Results
5. Field Notes
6. Crack Summary
7. Crack Intensity Diagram

Washington State

Department of Transportation

Mix Design (WSDOT Form 350-040)			
Water (max) $=217$ lbs/cy \quad w/c $=0.38 \quad \max$			
Cementitious Materials	Lbs/cy	Source	Type, Class or Grade
cement	480	Lehigh Cement Co	Type I-II
fly ash	85	Lafarge	Type F
slag			
latex			
microsilica			Product
Concrete Admixtures	oz/cy	Manufacturer	MB AE 90
air entrainment	1 to 6	BASF	
water reducer			Glenium 3030 NS
HR water reduce	25 to 45	BASF	Master Life SRA
set retarder			
shrink. reducer	30 to 45	BASF	

Concrete Test Results			
compressive strength @ 28 days	6,458	psi	
modulus of elasticity	$5,461,245$	psi	
permeability @ 56 days	1,463	coulombs	
mix design density	146.8	$\mathrm{lb} / \mathrm{cf}$	

Shrinkage Test Results			
Dry Age	\% Length	$\begin{gathered} 0.000 \% \\ -0.005 \% \\ -0.010 \% \\ -0.015 \% \\ -0.020 \% \\ -0.025 \% \\ -0.030 \% \\ -0.035 \% \end{gathered}$	
(days)	Change		
0			
4			
7	-0.0100\%		
14	-0.0180\%		
21	-0.0260\%		
28	-0.0280\%		$\begin{array}{llllllll}7 & 14 & 21 & 28 & 35 & 42 & 49 & 56\end{array}$
56			Dry Age (days)

Aggregate						
	Comp. 1	Comp. 2	Comp. 3	Comp. 4	Comp. 5	
WSDOT Pit \#	J-9	J-9	J-9			
Grading	Class 1	$\# 67$	$\# 4$			
\% Total	39.6%	45.1%	15.3%			
Lbs/cy	1265	1440	490			
ASR Mitigation Use of low alkali cement						

Notes
This is the same mix that was used for Br. 5/434SCD

Contractor Mowat Construction Co	Submitted By Greg Smith		Date $12 / 15 / 2011$
Concrete Supplier		Plant Location Holroyd Co．，Inc．	3131 29th Ave Sw Tumwater，WA
Contract Number	Contract Name		
8189	Nalley Valley Eastbound		

This mix is to be used in the following Bid Item No（s）：$\quad 121,122,123,124,125,126,127$
Concrete Class：（check one only）
$\square 3000$
口 4000 区 4000 D
$\square 4000{ }^{\mathrm{a}}$
\square
4000W

Concrete Overlay
\square Cement Concrete Pavement
\square Other Shrinkage Reducer

Remarks： \qquad

Mix Design No．
6091FASD
Plant No．
Tacoma（3－4）

Cementitious Materials	Source	Type，Class or Grade	Sp．Gr．	Lbs／cy
Cement	Lehigh Cement Co	Type I－II	3.15	480
Fly Ash				
GGBFS（Slag）	Lafarge	Type F	2.61	85
Latex				
Microsilica				

Concrete Admixtures	Manufacturer	Product	Type	Est．Range （oz／cy）
Air Entrainment	BASF Admixtures，Inc．	MB AE ${ }^{\text {TM } 90}$		$1-6$
Water Reducer				
High－Range Water Reducer	BASF Admixtures，Inc．	Glenium® 3030 NS	Type F	$25-45$
Set Retarder				
Other Shrinkage Reducer	BASF Admixtures，Inc．	MasterLIFE® SRA 20	Type S	$30-45$

Water（Maximum） 217 Ib		$\mathrm{lbs} / \mathrm{cy}$	Is any of the water Recycled or Reclaimed？			$\square \mathrm{Yes}{ }^{\mathrm{e}}$ 区 No
Water Cementitious Ratio（Maximum） 0.38			Mix Design Density			$\mathrm{lbs} / \mathrm{cf}^{\mathrm{d}}$
Design Performance	1	2	3	4	5	Average ${ }^{\text {f }}$
28 Day Compressive Strength（cylinders）psi	6，370	6，460	6，380	6，410	6，670	6，458
14 Day Flexurald Strength（beams）psi						

Agency Use Only（Check appropirate Box）

This Mix Design MEETS CONTRACT SPECIFICATIONS and may be used on the bid items noted above
This Mix Design DOES NOT MEET CONTRACT SPECIFICATIONS and is being returned for corrections

Distribution：Original－Contractor
Copies To－State Materials Lab－Structural Materials Eng．；Regional Materials Lab；Project Inspector

Mix Design No. \qquad Plant No. \qquad
Aggregate Information

Concrete Aggregates	Component 1	$\begin{gathered} \text { Component } \\ 2 \end{gathered}$	Component 3	Component 4	$\begin{gathered} \text { Component } \\ 5 \end{gathered}$	Combined Gradation
WSDOT Pit No.	J-9	J-9	J-9			
WSDOT ASR 14-day Results (\%) ${ }^{\text {b }}$	\Yes \square No	\triangle Yes \square No	\triangle Yes \square No	\square Yes \square No	$\square \mathrm{Yes} \square \mathrm{No}$	
Grading ${ }^{\text {c }}$	Class 1	\#67	\#4			
Percent of Total Aggregate	39.6	45.1	15.3			100\%
Specific Gravity	2.63	2.69	2.69			
Lbs/cy (ssd)	1265	1440	490			3195

Percent Passing

Fineness Modulus: \qquad (Required for Class 2 Sand)
ASR Mitigation Method Proposed ${ }^{\text {b }}$: Pit No. J-9 has ASR of 0.43 and is mitigated by the use of low alkali cement.

Notes:

a Required for Class 4000D and 4000P mixes.
b Alkali Silica Reactivity Mitigation is required for sources with expansions over 0.20% - Incidate method for ASR mitigation. For expansion of $0.21 \%-0.45 \%$, acceptable mitigation can be the use of low alkali cement or 25% type F fly ash. Any other proposed mitigation method or for pits with greater than 0.45% expansion, proof of mitigating measure, either ASTM C1260/AASHTO T303 test results must be attached.
If ASTM C 1293 testing has been submitted indicating 1-year expansion of 0.04% or less, mitigation is not required.
c AASHTO No. 467, 57, 67, 7, 8; WSDOT Class 1, Class 2; or combined gradation. See Standard Specification 9-03.1.
d Required for Cement Concrete Pavements.
e Attach test results indicating conformance to Standard Specification 9-25.1.
f Actual Average Strength as determined from testing or estimated from ACl 211.

Modulus of Elasticity

$$
5,461,245 \mathrm{psi}
$$

ASTM C-672 Scaling Resistance of Concrete Surfaces Exposed to Deicing Chemicals

Procudure: ASTM C-672

Result:	Cycles	
	Rating	
		0
10	0	
15	0	
25		0
30		0

Rout Is. Shogun
Rob Shogren, P.E.
Technical Service Engineer
Lafarge North America

Lafarge North America Concrete Lab
5400 W Marginal Way SW
Seattle, WA. 98106

Report To: Holroyd
Date: September 30, 2011
Attention: Quality Control Personnel

Subject:
Tested Materials:
Date Sampled:
Mix Design:

August 2, 2011
 Valley Valley HPC

Curing:

ASTM C-1202 Standard Cure

Results:

Age
Coulombs
56 day
1463
*The ASTM C-1202 procedure was followed.

The test result is only valid if the aggregates) samples) is(are) representative of the current production and it is to be noted that Lafarge has no knowledge of the representatives of the sample received for testing. Also, material quality can vary with different locations in a quarry. It is recommended that testing be carried out on an annual basis or more frequently if a variation in stone quality is suspected.

Although the Lafarge North America Seattle Concrete Lab. applies state-of-the-art test methods, Lafarge North America. and its affiliates (Lafarge) can not guarantee the results shown above and shall assume no liability whatsoever for any errors in such results and for the consequence of such errors.

Rob Shogren, P.E.
Technical Service Engineer
Lafarge North America

Lafarge North America Concrete Lab
5400 W Marginal Way SW
Seattle, WA. 98106
$\begin{array}{ll}\text { Report To: } & \begin{array}{l}\text { Holroyd } \\ \text { Quality Control Personnel }\end{array} \\ \text { Attention: } & \end{array}$

Subject: Length Change of Hardened Hydraulic-Cement Concrete Using Procedures of ASTM C-157
Tested Materials:

Date Sampled:
Source of Aggregates:

August 2, 2011
Holroyd

Mix Design:
WSDOT HPC

Results:
Slump: 4.5"
Temp: 64^{F}
Specimen Size: 4"x4"x10"
Consolidation: Nodding Initial Cure: Lime water submersion (28 day initial cure)

Percent Length Change (Average of 3)
0.010
0.018
0.026
0.028
*The ASTM C-157 procedure was followed.
The test result is only valid if the aggregates) samples) is(are) representative of the current production and it is to be noted that Lafarge has no knowledge of the representatives of the sample received for testing. Also, material quality can vary with different locations in a quarry. It is recommended that testing be carried out on an annual basis or more frequently if a variation in stone quality is suspected.

Although the Lafarge North America Seattle Concrete Lab. applies state-of-the-art test methods, Lafarge North America. and its affiliates (Lafarge) can not guarantee the results shown above and shall assume no liability whatsoever for any errors in such results and for the consequence of such errors.

Rob Shogren, P.E.
Technical Service Engineer
Lafarge North America

Bridge Description 2-Span (141' / 141'), 6-WF59G Girders (282' bridge length), 3-Lanes (55' wide roadway)

$$
\begin{aligned}
& \mathrm{L}=\text { length between diaphragms (or length of "bay") } \\
& \mathrm{S}=\text { girder spacing }
\end{aligned}
$$

$$
\mathrm{N}_{100}=\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse crack spaced at } 2 \mathrm{ft} \text { on center) }
$$

$$
\begin{aligned}
\mathrm{N}_{\mathrm{cr}} & =\text { number of leaching cracks counted during visual inspection } \\
\% & =\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) }
\end{aligned}
$$

Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	N_{cr}	N_{100}	\%
1	1	A	B	35.25	9.58	2	18	10\%
1	1	B	C	35.25	9.58	1	18	5\%
1	1	C	D	35.25	9.58	0	18	0\%
1	1	D	E	35.25	9.58	2	18	10\%
1	1	E	F	35.25	9.58	1	18	5\%
1	2	A	B	35.25	9.58	0	18	0\%
1	2	B	C	35.25	9.58	0	18	0\%
1	2	C	D	35.25	9.58	1	18	5\%
1	2	D	E	35.25	9.58	1	18	5\%
1	2	E	F	35.25	9.58	0	18	0\%
1	3	A	B	35.25	9.58	0	18	0\%
1	3	B	C	35.25	9.58	0	18	0\%
1	3	C	D	35.25	9.58	1	18	5\%
1	3	D	E	35.25	9.58	1	18	5\%
1	3	E	F	35.25	9.58	1	18	5\%
1	4	A	B	35.25	9.58	3	18	15\%
1	4	B	C	35.25	9.58	4	18	20\%
1	4	C	D	35.25	9.58	4	18	20\%
1	4	D	E	35.25	9.58	3	18	15\%
1	4	E	F	35.25	9.58	3	18	15\%
2	1	A	B	35.25	9.58	3	18	15\%
2	1	B	C	35.25	9.58	0	18	0\%
2	1	C	D	35.25	9.58	0	18	0\%
2	1	D	E	35.25	9.58	0	18	0\%
2	1	E	F	35.25	9.58	3	18	15\%
2	2	A	B	35.25	9.58	0	18	0\%
2	2	B	C	35.25	9.58	3	18	15\%
2	2	C	D	35.25	9.58	1	18	5\%
2	2	D	E	35.25	9.58	2	18	10\%
2	2	E	F	35.25	9.58	3	18	15\%
2	3	A	B	35.25	9.58	1	18	5\%
2	3	B	C	35.25	9.58	1	18	5\%
2	3	C	D	35.25	9.58	2	18	10\%
2	3	D	E	35.25	9.58	1	18	5\%
2	3	E	F	35.25	9.58	1	18	5\%
2	4	A	B	35.25	9.58	3	18	15\%
2	4	B	C	35.25	9.58	5	18	30\%
2	4	C	D	35.25	9.58	6	18	35\%
2	4	D	E	35.25	9.58	4	18	20\%
2	4	E	F	35.25	9.58	2	18	10\%

CRACKING INTENSITY ~ BRIDGE 16/3W

100% = CRACK EVERY 2 FT.

BRIDGE NUMBER	$16 / 3 W$
BRIDGE NAME	SR 16 OVER HOV
INSPECTION DATE	5/29/2015
DECK CONCRETE	PERFORMANCE BASED

BRIDGE 2/8.5N-W (BICKFORD AVE OVER US 2)

CONTENTS

1. Layout Plan Sheet
2. Mix Design Summary
3. Concrete Mix Design Form
4. Concrete Test Results
5. Field Notes
6. Crack Summary
7. Crack Intensity Diagram

Washington State

Department of Transportation
 Bridge Description_2-Span (145' / 145'), 4-WF66G Girders (290' bridge length), 1-Lane (32' wide roadway)

Mix Design (WSDOT Form 350-040)			
Water (max) $=230$ lbs/cy $\quad \mathrm{w} / \mathrm{c}=0.40 \quad$ max			
Cementitious Materials	Lbs/cy	Source	Type, Class or Grade
cement	480	Ash Grove	Type I/II Low Alkali
fly ash	90	Lafarge	Type F
slag			
latex			
microsilica	10	SF 100	
Concrete Admixtures	oz/cy	Manufacturer	Product
air entrainment	$1-10$	BASF	AE-90
water reducer			
HR water reduce	23	BASF	Glenium 7500
set retarder			
shrink. reducer	64	BASF	MasterLife SRA 20

Concrete Test Results			
compressive strength @ 28 days	6,630	psi	
modulus of elasticity		psi	
permeability @ 56 days	1,548	coulombs	
mix design density	147.0	$\mathrm{lb} / \mathrm{cf}$	

Shrinkage Test Results			
Dry Age	\% Length		
(days)	Change		
0	-0.0030\%		
4	-0.0180\%		
7	-0.0220\%		
14	-0.0270\%		
21			
28	-0.0317\%		
56			

Aggregate						
	Comp. 1	Comp. 2	Comp. 3	Comp. 4	Comp. 5	
WSDOT Pit \#	D-306	D-306	D-306			
Grading	$\# 57$	Class 2 Sand	$\# 8$			
\% Total	48.5%	39.0%	9.5%			
Lbs/cy	1620	1238	300			
ASR Mitigation						
Use of low Alkali cement						

Notes
Shrinkage test was done with w/c ratio $=0.36$

Contractor Granite Construction	Submitted By Concrete Nor'West	Date $11 / 29 / 2012$				
Concrete Supplier	Plant Location Concrete Nor'West				Contract Name Contract Number 8286	Bickford Ave \& US 2 Improvements

This mix is to be used in the following Bid Item $\mathrm{No}(\mathrm{s}$):
Class 4000D
68.18

Concrete Class: (check one only)
$\square 3000$
$\square 4000$ 区 40000^{2}
$\square 4000{ }^{\mathrm{a}}$
$\square 4000 \mathrm{~W}$Concrete Overlay \square Cement Concrete Pavement \square Other \qquad

Remarks: Class 4000 D with high range water reducer and shrink reducing admixture. Needs to be less than 2000 coulombs at 56 days per AASHTO 277

Mix Design No. \qquad 15BICK1 REV 1
Plant No.
Getchell

Cementitious Mataterials	Source	Type, Class or Grade	Sp. Gr.	Lbs/cy
Cement	Ash Grove - Seattle	Type I/II Low Alkali	3.15	480
Fly Ash ${ }^{\text {a }}$	Lafarge	Type F	2.60	90
GGBFS (Slag)				
Latex				
Microsilica	BASF	SF 100	2.20	10

concrete Adimlxtures	Manufacturer	Product	Type	Est. Range (oz/cy)
Air Entrainment	BASF	AE-90		$1-10$
Water Reducer				
High-Range Water Reducer	BASF	Glenium 7500	F	23
Set Retarder				
Other	BASF	MasterLIFE SRA 20	SRA	64

Water (Maximum) 230						Yes ${ }^{\text {e }}$ 区No
Water Cementitious Ratio				D		$\mathrm{lbs} / \mathrm{ff} \mathrm{f}^{\mathrm{d}}$
Design Performance	1	2	3	4	5	Average ${ }^{f}$
28 Day Compressive Strength (cylinders) psi						SEE
14 Day Flexural ${ }^{\text {d }}$ Strength (beams) psi						Attached

Mix Design No. \qquad 15BICK1 REV 1

Plant No. \qquad Aggregate Information

Concrete Aggregates	$\begin{gathered} \text { Component } \\ 1 \end{gathered}$	$\underset{2}{\text { Component }}$	$\underset{3}{\text { Component }}$	Component 4	$\underset{5}{\text { Component }}$	Combined Gradation
WSDOT Pit No.	D-306	D-306	D - 306			
$\begin{aligned} & \text { WSDOT ASR 14-day } \\ & \text { Results (\%) }{ }^{\text {b }} \\ & \hline \end{aligned}$	\triangle Yes $\square_{\text {No }}$	\triangle Yes \square No	\ Yes $\square \mathrm{No}$	\square Yes \square No	\square Yes $\square^{\text {No }}$	5
Grading ${ }^{\text {c }}$	\# 57	Class 2 Sand	\#8		ह	
Percent of Total Aggregate	48.5	39	9.5		\%	100\%
Specific Gravity	2.71	2.67	2.69		\%	
Lbs/cy (ssd)	1620	1238	300			

Fineness Modulus: 2.83 (Required for Class 2 Sand)

> ASR Mitigation Method Proposed ${ }^{\text {b }}$: The use of low Alkali cement will mitigate the .44 ASR value at $D-306$ otes:

Notes:

a Required for Class 4000D and 4000P mixes.
b Alkali Silica Reactivity Mitigation is required for sources with expansions over 0.20% - Incidate method for ASR mitigation. For expansion of $0.21 \%-0.45 \%$, acceptable mitigation can be the use of low alkali cement or 25% type F fly ash.
Any other proposed mitigation method or for pits with greater than 0.45% expansion, proof of mitigating measure, either ASTM C1260 / AASHTO T303 test results must be attached.
If ASTM C 1293 testing has been submitted indicating 1 -year expansion of 0.04% or less, mitigation is not required.
c AASHTO No. 467, 57, 67, 7, 8; WSDOT Class 1, Class 2; or combined gradation. See Standard Specification 9-03.1.
d Required for Cement Concrete Pavements.
e Attach test results indicating conformance to Standard Specification 9-25.1.
f Actual Average Strength as determined from testing or estimated from ACl 211.

DOT Form $350-040 \mathrm{EF}$
 Revised 8106

Ash Grove Technical Center
11011 Cody Street, Suite 125
Overland Park, Kan. 66210
January 3, 2013 - Preliminary Report
January 24, 2013 - Final Report

Report Number:	R18459
Work Order Number:	WO-120607

SUBJECT
On December 10, 2012 a request for technical service was issued on behalf of Dave Enders of Concrete Nor' West in Burlington, Washington. Mr. Dave Burg requested that the Technical Center conduct AASHTO T 277 testing on the submitted concrete cylinders at specified ages.

SAMPLE IDENTIFICATION

Sample No.

Sample Description
S-122885
(4) 4×8 Concrete Cylinders, Cast 11-29-2012 Mix15 Bick1 (WSDOT 4000D)

Date Received

12/05/2012

TEST RESULTS

AASH'TO T 277 - Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration
Accelerated Cure

Sample No.	Charge Diameter, in.	Corrected Passed, C	Qualitative Charge, C	Qquivalent S-122885	4.00

AASHTO T 277 - Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration Standard Cure

Sample No.	Diameter, in.	Charge Passed, C	Corrected Chatge, C	Qualitative	
				Equivalent	Age, days
S-122885	4.00	2,882	2,533	Moderate	28
S-122885	4.00	1,762	1,548	Low	56
S-122885 *	4.00	---	---	---	56

* This sample's cell lost continuity midway through the test so the results are not reported.

Table 1. Chloride Ion Penetrability Based on Chatge Passed (Excerpted from AASHTO T 277)

Charge Passed (coulombs)

$$
>4,000
$$

$2,000-4,000$
$1,000-2,000$
$100-1,000$
<100

Chloride Ion Penetrability High
Moderate
Low
Very Low
Negligible

Materials Test ing \& Consulting, ic.
 Geotechnical Engineering - Special Inspection * Materials Testing • Environmental Consulting

AASHTO T-160, Length Change of Hardened Hydraulic-Cement Mortar and Concrete

Client: \quad Concrete Nor'West
Project: Q.C. - Getchell Pit
Project \#: 12B006-06

Mix Data						
Supplier: Concrete Nor'West Date/Time Batched: Nov 29, 12 8:55 AM Date/Time Cast: Nov 29, 12 10:35 AM Slump: $3.75^{\prime \prime}$ Air Content: 6.50% Concrete Temp: 58 Ambient Yemp: 63 W/C Ratio: 0.36 Unit Weight: NT Yield: \qquad Storage Method: Air Storage						
			Flyash, lbs.: 90			
			Water, gals.: 19.6			
			Fine Agg., lbs. 1241			
			Coarse Agg., lbs.: 1605 (7/8)			
			Coarse Agg., lbs.: $312\left(3 / 8^{\prime \prime}\right)$			
			Admixture, oz./cwt 21.3 (Glenium)			
			Admixture, oz./cwt 1.0 (MBAE-90)			
			Admixture, oz./cwt 64.0 (BASF Masterlife SRA) Admixture, oz./cwt			
Reference						
Sample I.D. \#	Bar Reading	Sample Reading	Date \&	Age of Concrete	Gauge Length	\% Change In Length
B5927	0.1635	0.0899	Nov 30, 12 10:19 AM	24 Hours	10	
B5928	0.1635	0.0783	Nov 30, 12 10:19 AM		10	
B5929	0.1635	0.1117	Nov 30, 12 10:19 AM	10		
B5927	0.1636	0.0896	Dec 27, 12 9:31 AM 28 day initial wet cureDec 27, 12 9:31 AM		10	-0.0040\%
B5928	0.1636	0.0777			10	- 0.0070%
B5929	0.1636	0.1120	Dec 27, 12 9:31 AM	28 day initial wet cure	10	0.0020 \%
					Average:	-0.0030\%
B5928	0.1631	0.0875	Dec 31, 12 9:10 AM	4 day air cure	10	- 0.0200%
B5929	0.1631	0.0762	Dec 31, 12 9:10 AM		10	- 0.0170%
	0.1631	0.1096	Dec 31, 12 9:10 AM		10	- 0.0170%
B5927	0.1650	0.0890		7 day air cure	Average:	-0.0180\%
B5928	0.1650	0.0777	Jan 3, 13 9:19 AM		10	-0.0240\%
B5929	0.1650	0.1111	Jan 3, 13 9:19 AM		10	- 0.0210%
					Average:	-0.0220\%
B5927	0.1651	0.0885	Jan 10, 13 9:00 AM	14 day air cure	10	- 0.0300%
B5928	0.1651	0.0774	Jan 10, 13 9:00 AM		10	- 0.0250%
B5929	0.1651	0.1107	Jan 10, 13 9:00 AM		10	- 0.0260%
					Average:	- 0.0270 \%
B5927 B5928	0.1653 0.1653	0.0882	$\begin{array}{lll}\text { Jan 24, } 13 & 2: 45 \mathrm{PM} \\ \text { Jan } 24 & \text { l3 } & 2.45 \mathrm{PM}\end{array}$	28 day air cure	10	- 0.0350%
B5929	0.1653	0.1105	Jan 24, 13 Jan 24, 13 2:45 PM 2:4 PM		10	-0.0300\%
					Average:	- 0.0317%

Remarks: 10 Ibs. of Silica Fume added to mix. Average 28 compressive strength for this concrete was 6630 psi .

Reviewed By: C

Corporate ~ 777 Chrysler Drive • Burlington, WA 98233 - Phone (360) 755-1990 - Fax (360) 755-1980
NW Region ~ 2126 East Bakerview Rd., Suite \#101 • Bellingham, WA 98226 • Phone (360) 647-6061 • Fax (360) 647-8111
SW Region ~ 2118 Black Lake Blvd. - Olympia, WA 98512 - Phone (360) 534-9777 • Fax (360) 534-9779
Visit our website: www.mtc-inc.net

Bridge \# $2 / 8.5 \mathrm{~N}-\mathrm{W}$ Bridge Name N-W Ramp (Bickford Ave) over US 2 Structure ID \qquad Contract \# 8286 Region NW $\begin{aligned} & \text { Project Engineer } \text { Mark Sawyer } \\ & \\ & \text { Concrete Supplier } \text { Concrete Nor'West } \\ &\end{aligned}$ Performance Deck Concrete? Yes Contractor \qquad
\qquad Deck Placement 4/3/2013 Bridge Description 2-Span (145' / 145'), 4-WF66G Girders (290' bridge length), 1-Lane (32' wide roadway)

$$
\begin{aligned}
& \mathrm{L}=\text { length between diaphragms (or length of "bay") } \\
& \mathrm{S}=\text { girder spacing }
\end{aligned}
$$

$$
\mathrm{N}_{100}=\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse crack spaced at } 2 \mathrm{ft} \text { on center) }
$$

$$
\begin{aligned}
\mathrm{N}_{\mathrm{cr}} & =\text { number of leaching cracks counted during visual inspection } \\
\% & =\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) }
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Avg. }= & 6 \% \\
\text { Min. }= & 0 \%
\end{array}
$$

Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	$\mathrm{N}_{\text {cr }}$	N_{100}	$\%$
1	1	A	B	36.25	8.75	1	18	5%
1	1	B	C	36.25	8.75	3	18	15%
1	1	C	D	36.25	8.75	3	18	15%
1	2	A	B	36.25	8.75	0	18	0%
1	2	B	C	36.25	8.75	0	18	0%
1	2	C	D	36.25	8.75	0	18	0%
1	3	A	B	36.25	8.75	0	18	0%
1	3	B	C	36.25	8.75	0	18	0%
1	3	C	D	36.25	8.75	0	18	0%
1	4	A	B	36.25	8.75	4	18	20%
1	4	B	C	36.25	8.75	4	18	20%
1	4	C	D	36.25	8.75	0	18	0%
2	1	A	B	36.25	8.75	2	18	10%
2	1	B	C	36.25	8.75	2	18	10%
2	1	C	D	36.25	8.75	2	18	10%
2	2	A	B	36.25	8.75	1	18	5%
2	2	B	C	36.25	8.75	2	18	10%
2	2	C	D	36.25	8.75	0	18	0%
2	3	A	B	36.25	8.75	0	18	0%
2	3	B	C	36.25	8.75	1	18	5%
2	3	C	D	36.25	8.75	0	18	0%
2	4	A	B	36.25	8.75	3	18	15%
2	4	B	C	36.25	8.75	3	18	15%
2	4	C	D	36.25	8.75	0	18	0%

CRACKING INTENSITY ~ BRIDGE 2/8.5N-W

100% = CRACK EVERY 2 FT.

BRIDGE 395/441N-E (N-E RAMP OVER N-N RAMP)

CONTENTS

1. Layout Plan Sheet
2. Mix Design Summary
3. Concrete Mix Design Form
4. Concrete Test Results
5. Field Notes
6. Crack Summary
7. Crack Intensity Diagram

Washington State
 Department of Transportation

Mix Design (WSDOT Form 350-040)			
Water (max) $=220$ lbs/cy \quad w/c $=0.39 \quad$ max			
Cementitious Materials	Lbs/cy	Source	Type, Class or Grade
cement	435	Lafarge	Type I
fly ash	130	Wabamun/Sundance	Type F
slag			
latex			
microsilica			Product
Concrete Admixtures	oz/cy	Manufacturer	
air entrainment	15 to 45	WR Grace	Daravair 1000
water reducer	15 to 40	WR Grace	WRDA 64
AR water reduce	11 to 25	WR Grace	Adva 190 or 195
set retarder			
shrink. reducer	128	WR Grace	Eclipse Plus

Concrete Test Results			
compressive strength @ 28 days	5,660	psi	
modulus of elasticity		psi	
permeability @ 56 days	1,452	coulombs	
mix design density	140.6	$\mathrm{lb} / \mathrm{cf}$	

Shrinkage Test Results			
Dry Age	\% Length	0.000\% -0.005\% -0.010\% -0.015\% -0.020% -0.025% -0.030% -0.035\%	
(days)	Change		
0			
4			
7	-0.0100\%		
14	-0.0160\%		-
21	-0.0250\%		
28	-0.0340\%		$\begin{array}{llllllll}7 & 14 & 21 & 28 & 35 & 42 & 49 & 56\end{array}$
56			Dry Age (days)

Aggregate						
	Comp. 1	Comp. 2	Comp. 3	Comp. 4	Comp. 5	
WSDOT Pit \#	PS C-173 PS C-107	PS C-173 PS C-108	PS C-173 PS C-109	PS C-173 PS C-110	PS C-297 PS C-120	
Grading	$11 / 2$ Round	$3 / 4$ Round	$3 / 8$ Round	Course Sand	Blend Sand	
\% Total	16.0%	36.0%	10.0%	24.0%	1400.0%	
Lbs/cy	490	1090	300	710	420	
ASR Mitigation Low Alkali Cement and Flyash						

Notes
This was pilot bridge for performance based mix design
Original contract called for a different bridge to use the
performance based specification, but schedule conflicts
necessitated changing to this bridge.

Temperature				
$100^{\circ} \mathrm{F}$				
$90^{\circ} \mathrm{F}------$				
$80^{\circ} \mathrm{F}-\mathrm{-}$ -				
$70^{\circ} \mathrm{F}-\mathrm{f}$				
$50^{\circ} \mathrm{F}$				
$30^{\circ} \mathrm{F}$				
$20^{\circ} \mathrm{F}$				
$10^{\circ} \mathrm{F}$				
${ }^{\circ} \mathrm{F}$				
	80200^{0}	$883\left(32^{0}\right.$	$8+100^{01}$	$8+50^{0}$
	Under Barrier		Deck Over Gir. D	

Contractor Graham Construction \& Management, Inc.	Submitted By Cratg L. Matteson Central Pre-Mix Concrete Co.	Date $2 / 6 / 2009$
Concrete Supplier Central Pre-Mix Concretc Co.	Plant Location 1901 N. Sullivan Rd. 302 N. Park Ru, or Crestlinc \& Magnesium	
Contract Number 7610	Contract Name US 395/NSC-US 2 Lowering	

This mix is to be used in the following Bid ltem No(s): Concrete Class: (check one only)
$\square 3000 \quad \square 4000 \quad \boxtimes 4000 \stackrel{\text { a }}{\square}$ $\square 4000{ }^{9}$
$\square 4000 \mathrm{~W}$Other Eclipse Plus 4000D Bridge Deck Project Specific Performance Mix Item \#74

Remarks: Bridge Deck Concrete for US 395 SB Over US 2 Bridge. The Tatal Paste Volume is 6.75 cfor 25.0%

Mix Design No.
320292

Cementitious Materials	Source	Type, Class or Grade	Sp. Gr.	Lbs/cy
Cement	Lafarge Richmond, BC	AASHTO Type 1	3.15	435
Fly Ash				
GGBFS (Slag)	Wabamun or Sundance	Type F	2.01	130
Latex				
Microsilica				

Concrete Admixtures	Manufacturer	Product	Type	Est. Range (oz/cy)
Air Entrainment	WR Grace	Daravair 1000		15 to 45
Water Reducer	WR Grace	WRDA 64	A \& D	$15-40$
High-Range Water Reducer	WR Grace	Adva 190 or 195	HRWRA	$11-25$
Set Retarder				
Other Eclipse Plus	WR Grace	Shrinkage Reducing	S	128

Water (Maximum) 220 Ib		Is any of the water Recycled or Reclaimed?				
Water Cementitious Ratio	. 39			Density	$140.6+/$	
Design Performance	1	2	3	4	5	Average ${ }^{\mathrm{f}}$
28 Day Compressive Strength (cylinders) psi	5,680	5,670	5,640	$\mathrm{Pa}^{2} \mathrm{E}$	Pex Pr mem	5,660
14 Day Flexural ${ }^{\text {d }}$ Strength (beams) psi				TEE	152009	

Agency Use Only (Check appropirate Box)

HILMES PEO.

\square This Mix Design MEETS CONTRACT SPECIFICATIONS and may be used on the bid items noted above
\square This Mix Design DOES NOT MEET CONTRACT SPECIFICATIONS and is being returned for corrections

\qquad
PE Signature
Date

Mix Design No. 320292

Plant No. \qquad 1,3 or 4
Aggregate Information

Concrete Aggregates	Component 1	Component 2	Component 3	Component 4	Component 5	Combined Gradation
WSDOT Pit No.	PS C-173 or PS C-107	$\begin{aligned} & \text { PS C- }-173 \text { or } \\ & \text { PSC- } 107 \end{aligned}$	$\begin{aligned} & \text { PS C- } 173 \text { or } \\ & \text { PS C- } 107 \end{aligned}$	PS C-173 or PS C-107	PS C-297 \& PS C-120	
WSDOT ASR 14-day Results (\%) ${ }^{b}$	\triangle Yes \square No	\triangle Yes \square No	$\boxed{\square}$ Yes \square No	\boxtimes Yes \square No	\boxtimes Yes \square No	
Grading ${ }^{\text {c }}$	$11 / 2^{11}$ Round Combined	3/4" Round Combined	3/8" Round Combined	Course Sand Combined	Blend Sand Combined	
Percent of Total Aggregate	16	36	10	24	14	100\%
Specific Gravity	2.69	2.68	2.67	2.64	2.64	
Lbs/cy (ssd)	490	1090	300	710	420	$11 / 2^{\prime \prime}$ NMA Specification

Percent Passing

2 inch						*	
1-1/2 inch	100					100	100
1 inch	42.9	100				91.0	
$3 / 4$ inch	4.7	92.2				82.0	62-88
1/2 inch	1.0	55.1	100			67.9	
$3 / 8$ inch	. 7	30.7	99.0	100	100	59.0	43-64
No. 4		2.6	32.9	96.2	99.4	41.2	29-47
No. 8		. 8	4.9	58.1	97.1	28.3	19-34
No. 16		. 5	1.2	18.9	87.9	17.1	12-25
No. 30		. 4	. 7	6.5	60.6	10.3	7-18
No. 50		. 3	. 6	2.8	26.4	4.5	3-14
No. 100		. 3	. 5	1.4	8.0	1.6	0-10
No. 200	. 5	. 3	. 4	1.0	3.7	1.0	0-2.0

Fineness Modulus: N/A (Required for Class 2 Sand)
ASR Mitigation Method Proposed ${ }^{\text {b }}$:

Using Low Alkali Cement and Flyash

Notes:

a Required for Class 4000D and 4000P mixes.
b Alkall Silica Reactivity Mitigation is required for sources with expansions over 0.20% - Incidate method for ASR mitigation. For expansion of $0.21 \%-0.45 \%$, acceptable mitigation can be the use of low alkali cement or 25% type F fly ash. Any other proposed mitigation method or for pits with greater than 0.45% expansion, proof of mitigating measure, either ASTM C1260 / AASHTO T303 test results must be attached. If ASTM C 1293 testing has been submitted indicating 1 -year expansion of 0.04% or less, mitigation is not required.
c AASHTO No. 467, 57, 67, 7, 8; WSDOT Class 1, Class 2; or combined gradation. See Standard Specification 9-03. 4.
d Required for Cement Concrete Pavements.
e Attach test results indicating conformance to Standard Specification 9-25.1.
f Actual Average Strength as determined from testing or estimated from ACl 211
DOT Form 350-040 EF
Revised 6/06

LAFARGE

NORTH AMERICA

Lafarge North America Concrete Lab 5400 W Marginal Way SW
Seattle, WA. 98106

Report To:	Central Pre-Mix Concrete Co.
Attention:	Quality Control Personnel

Subject: \quad Rapid Chloride lon Penetration ASTM C-1202
Date Sampled: September 2008

Mix Design:
HPC \#2

Results:
Age (Days)
56

1452

The test result is only valid if the aggregate (s) samples) is(are) representative of the current production and it is to be noted that Latarge has no knowledge of the representatives of the sample received for testing. Also, material quality can vary with different locations in a quarry. It is recommended that testing be carried out on an annual basis or more frequently if a variation in stone quality is suspected.

Although the Lafarge North America Seattle Concrete Lab. applies state-of-the-art test methods, Lafarge North America, and its aliifiates (Lafarge) can rob guaranies: the results shown above and shall assume no lability whatsoever for any errors in such results and tor the consequence of such errors.

Sincerely,

RECEIVED
FEB 062009

Rob Shogren, P.E.
Technical Service Engineer
Lafarge North America

NORTH AMERICA

Lafarge North America Concrete Lab
5400 W Marginal Way SW
Seattle, WA. 98106

Report To:	CPM Spokane	Date: October 30, 2008
Attention:	Quality Control Personnel	

Subject: \quad ASTM C-157 Standard Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete
Tested Materials

Date Sampled:	Sept 2008
Mix Design ID:	Mix \#2

ASTM C-157 Expansion: Three (3) test bars were prepared from each concrete mixture. Results are an average of the three (3) bars.

Age (Days)	$\# 1$
7	0.010%
14	0.016%
21	0.025%
28 (final)	0.034%

 of the representatives of the sample received for testing. Also, material quality can vary with ditleren locations in a quay. his recommended brat testing be carved out on on annal basis or mere frequently if a variation in stone quality is suspected.

Rob Shogren, P.E.
Technical Service Engineer
Lafarge North America

RECEIVED
FEB 062009
HIDES PED.

Bridge \# 395/441N-E Bridge Name
N-E Ramp Over N-N Ramp

Structure ID \qquad
Contract \# 7610 Region ER
Contractor \qquad

Project Engineer	Bob Hilmes
Concrete Supplier	Central Pre-Mix Conc.

Bridge Description \qquad
Concrete Supplier Central Pre-Mix Conc.
Deck Placement \qquad
7/29/2010 2-Span (110' / 110"), 4-WF58G Girders (220' bridge length), 2-Lanes (37' wide roadway)

$$
\begin{aligned}
& \mathrm{L}=\text { length between diaphragms (or length of "bay") } \\
& \mathrm{S}=\text { girder spacing }
\end{aligned}
$$

$$
\mathrm{N}_{100}=\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse crack spaced at } 2 \mathrm{ft} \text { on center) }
$$

$$
\begin{aligned}
\mathrm{N}_{\mathrm{cr}} & =\text { number of leaching cracks counted during visual inspection } \\
\% & =\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) }
\end{aligned}
$$

Avg. $=$	
Min. $=$	0%
Max. $=$	5%

Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	$\mathrm{N}_{\text {cr }}$	N_{100}	$\%$
1	1	A	B	36.67	10.42	0	18	0%
1	1	B	C	36.67	10.42	0	18	0%
1	1	C	D	36.67	10.42	0	18	0%
1	2	A	B	36.67	10.42	0	18	0%
1	2	B	C	36.67	10.42	0	18	0%
1	2	C	D	36.67	10.42	0	18	0%
1	3	A	B	36.67	10.42	0	18	0%
1	3	B	C	36.67	10.42	0	18	0%
1	3	C	D	36.67	10.42	0	18	0%
2	1	A	B	36.67	10.42	0	18	0%
2	1	B	C	36.67	10.42	0	18	0%
2	1	C	D	36.67	10.42	0	18	0%
2	2	A	B	36.67	10.42	0	18	0%
2	2	B	C	36.67	10.42	0	18	0%
2	2	C	D	36.67	10.42	0	18	0%
2	3	A	B	36.67	10.42	0	18	0%
2	3	B	C	36.67	10.42	0	18	0%
2	3	C	D	36.67	10.42	1	18	5%

CRACKING INTENSITY ~ BRIDGE 395/441N-E
100% = CRACK EVERY 2 FT .

APPENDIX C

MULTI-SPAN PRESTRESSED GIRDER BRIDGES

BRIDGE 3034A (MANETTE BRIDGE)
BRIDGE 90/106N (Gold CREEK WB)
6/115 (SOUTH FORK CHEHALIS RIVER)
BRIDGE 5/234W (I-5 OVER BLAKESLEE JUNCTION RAILROAD)
BRIDGE 105/4 (NORTH RIVER)

BRIDGE 105/3 (SMITH CREEK)
BRIDGE 6/8 (WILLAPA RIVER)

BRIDGE 5/232NCD (SKOOKUMCHUCK RIVER NBCD)

BRIDGE 5/232SCD (SKOOKUMCHUCK RIVER SBCD)
BRIDGE 101/44 (BONE RIVER)

BRIDGE 3034A (MANETTE BRIDGE)

CONTENTS

1. Layout Plan Sheet
2. Field Notes
3. Crack Summary
4. Crack Intensity Diagram

$$
\begin{aligned}
& \mathrm{L}=\text { length between diaphragms (or length of "bay") } \\
& \mathrm{S}=\text { girder spacing }
\end{aligned}
$$

$$
\mathrm{N}_{100}=\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse crack spaced at } 2 \mathrm{ft} \text { on center) }
$$

$$
\mathrm{N}_{\mathrm{cr}}=\text { number of leaching cracks counted during visual inspection }
$$

$$
\begin{array}{c|c}
\left.\%=\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest } 5 \%\right) & \begin{array}{c}
\text { Min. }= \\
\text { Max. }=
\end{array} \begin{array}{l}
45 \% \\
\hline
\end{array} \\
\hline
\end{array}
$$

Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	N_{cr}	N_{100}	\%
1	1	A	B	38.67	12.24	9	19	45\%
1	1	B	C	38.67	12.24	10	19	55\%
1	1	C	D	38.67	12.24	13	19	70\%
1	2	A	B	51.00	11.82	14	26	55\%
1	2	B	C	51.00	11.82	17	26	65\%
1	2	C	D	51.00	11.82	14	26	55\%
1	3	A	B	62.50	11.58	28	31	90\%
1	3	B	C	62.50	11.58	32	31	100\%
1	3	C	D	62.50	11.58	29	31	95\%
2	1	A	B	62.50	11.58	\#N/A	31	\#N/A
2	1	B	C	62.50	11.58	\#N/A	31	\#N/A
2	1	C	D	62.50	11.58	\#N/A	31	\#N/A
2	2	A	B	62.50	11.58	\#N/A	31	\#N/A
2	2	B	C	62.50	11.58	\#N/A	31	\#N/A
2	2	C	D	62.50	11.58	\#N/A	31	\#N/A
2	3	A	B	62.50	11.58	\#N/A	31	\#N/A
2	3	B	C	62.50	11.58	\#N/A	31	\#N/A
2	3	C	D	62.50	11.58	\#N/A	31	\#N/A
2	4	A	B	62.50	11.58	\#N/A	31	\#N/A
2	4	B	C	62.50	11.58	\#N/A	31	\#N/A
2	4	C	D	62.50	11.58	\#N/A	31	\#N/A
3	1	A	B	62.50	11.58	\#N/A	31	\#N/A
3	1	B	C	62.50	11.58	\#N/A	31	\#N/A
3	1	C	D	62.50	11.58	\#N/A	31	\#N/A
3	2	A	B	62.50	11.58	\#N/A	31	\#N/A
3	2	B	C	62.50	11.58	\#N/A	31	\#N/A
3	2	C	D	62.50	11.58	\#N/A	31	\#N/A
3	3	A	B	62.50	11.58	\#N/A	31	\#N/A
3	3	B	C	62.50	11.58	\#N/A	31	\#N/A
3	3	C	D	62.50	11.58	\#N/A	31	\#N/A
3	4	A	B	62.50	11.58	\#N/A	31	\#N/A
3	4	B	C	62.50	11.58	\#N/A	31	\#N/A
3	4	C	D	62.50	11.58	\#N/A	31	\#N/A
4	1	A	B	62.50	11.58	\#N/A	31	\#N/A
4	1	B	C	62.50	11.58	\#N/A	31	\#N/A
4	1	C	D	62.50	11.58	\#N/A	31	\#N/A
4	2	A	B	62.50	11.58	\#N/A	31	\#N/A
4	2	B	C	62.50	11.58	\#N/A	31	\#N/A
4	2	C	D	62.50	11.58	\#N/A	31	\#N/A
4	3	A	B	62.50	11.58	\#N/A	31	\#N/A
4	3	B	C	62.50	11.58	\#N/A	31	\#N/A

Bridge \#	303/4A	Bridge Name	Manette Bridge		Structure ID		26A
Contract \#	7926	Region OR	Project Engineer	Michele Britton	Performance Deck Concrete?		No
Contractor	Manson-Mowat, A J.V.		Concrete Supplier		Deck Placement	≈ 2011	
Bridge Description 7-Span (160' / 250' 250 ' / 250' / 250' / 250' / 140'), 4-P.C./P.T. Girders (1550' bridge length), 2-Lanes (44' wide)							

$$
\begin{aligned}
& \mathrm{L}=\text { length between diaphragms (or length of "bay") } \\
& \mathrm{S}=\text { girder spacing }
\end{aligned}
$$

$$
\mathrm{N}_{100}=\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse crack spaced at } 2 \mathrm{ft} \text { on center) }
$$

$$
\mathrm{N}_{\mathrm{cr}}=\text { number of leaching cracks counted during visual inspection }
$$

$$
\%=\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) }
$$

CRACKING INTENSITY ~ BRIDGE 16/7S-E
100\% = CRACK EVERY 2 FT.
X x X $=$ CRACKS NOT COUNTED DUE TO LIMITED ACCESS
SPANS 3, 4 AND 5 NOT SHOWN FOR CLARITY

BRIDGE NUMBER	$303 / 4 \mathrm{~A}$
BRIDGE NAME	MANETTE BRIDGE
INSPECTION DATE	$5 / 29 / 2015$
DECK CONCRETE	TRADITIONAL

BRIDGE 90/106N (GOLD CREEK WB)

CONTENTS

1. Layout Plan Sheet
2. Field Notes
3. Crack Summary
4. Crack Intensity Diagram

$$
\begin{aligned}
& \mathrm{L}=\text { length between diaphragms (or length of "bay") } \\
& \mathrm{S}=\text { girder spacing }
\end{aligned}
$$

$$
\mathrm{N}_{100}=\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse crack spaced at } 2 \mathrm{ft} \text { on center) }
$$

$$
\begin{aligned}
\mathrm{N}_{\mathrm{cr}} & =\text { number of leaching cracks counted during visual inspection } \\
\% & =\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) }
\end{aligned}
$$

Avg. $=$	44%
Min. $=$	5%

							Max. $=$	80\%
Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	N_{cr}	N_{100}	\%
1	1	A	B	38.07	8.50	7	19	35\%
1	1	B	C	38.07	8.50	9	19	45\%
1	1	C	D	38.07	8.50	9	19	45\%
1	1	D	E	38.07	8.50	9	19	45\%
1	1	E	F	38.07	8.50	10	19	55\%
1	1	F	G	38.07	8.50	9	19	45\%
1	2	A	B	38.07	8.50	10	19	55\%
1	2	B	C	38.07	8.50	9	19	45\%
1	2	C	D	38.07	8.50	10	19	55\%
1	2	D	E	38.07	8.50	10	19	55\%
1	2	E	F	38.07	8.50	11	19	60\%
1	2	F	G	38.07	8.50	8	19	40\%
1	3	A	B	38.07	8.50	9	19	45\%
1	3	B	C	38.07	8.50	12	19	65\%
1	3	C	D	38.07	8.50	12	19	65\%
1	3	D	E	38.07	8.50	14	19	75\%
1	3	E	F	38.07	8.50	11	19	60\%
1	3	F	G	38.07	8.50	11	19	60\%
1	4	A	B	38.07	8.50	3	19	15\%
1	4	B	C	38.07	8.50	5	19	25\%
1	4	C	D	38.07	8.50	3	19	15\%
1	4	D	E	38.07	8.50	5	19	25\%
1	4	E	F	38.07	8.50	4	19	20\%
1	4	F	G	38.07	8.50	5	19	25\%
2	1	A	B	38.75	8.50	2	19	10\%
2	1	B	C	38.75	8.50	2	19	10\%
2	1	C	D	38.75	8.50	2	19	10\%
2	1	D	E	38.75	8.50	1	19	5\%
2	1	E	F	38.75	8.50	2	19	10\%
2	1	F	G	38.75	8.50	5	19	25\%
2	2	A	B	38.75	8.50	9	19	45\%
2	2	B	C	38.75	8.50	9	19	45\%
2	2	C	D	38.75	8.50	9	19	45\%
2	2	D	E	38.75	8.50	9	19	45\%
2	2	E	F	38.75	8.50	9	19	45\%
2	2	F	G	38.75	8.50	10	19	55\%
2	3	A	B	38.75	8.50	12	19	65\%
2	3	B	C	38.75	8.50	11	19	60\%
2	3	C	D	38.75	8.50	12	19	65\%
2	3	D	E	38.75	8.50	13	19	70\%
2	3	E	F	38.75	8.50	13	19	70\%

$$
\begin{aligned}
& \mathrm{L}=\text { length between diaphragms (or length of "bay") } \\
& \mathrm{S}=\text { girder spacing }
\end{aligned}
$$

$$
\mathrm{N}_{100}=\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse crack spaced at } 2 \mathrm{ft} \text { on center) }
$$

$$
\begin{aligned}
\mathrm{N}_{\mathrm{cr}} & =\text { number of leaching cracks counted during visual inspection } \\
\% & =\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) }
\end{aligned}
$$

Avg. $=$	44%
Min. $=$	5%

Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	N_{cr}	N_{100}	\%
2	3	F	G	38.75	8.50	13	19	70\%
2	4	A	B	38.75	8.50	6	19	30\%
2	4	B	C	38.75	8.50	6	19	30\%
2	4	C	D	38.75	8.50	7	19	35\%
2	4	D	E	38.75	8.50	6	19	30\%
2	4	E	F	38.75	8.50	6	19	30\%
2	4	F	G	38.75	8.50	5	19	25\%
3	1	A	B	38.75	8.50	8	19	40\%
3	1	B	C	38.75	8.50	14	19	75\%
3	1	C	D	38.75	8.50	12	19	65\%
3	1	D	E	38.75	8.50	11	19	60\%
3	1	E	F	38.75	8.50	9	19	45\%
3	1	F	G	38.75	8.50	11	19	60\%
3	2	A	B	38.75	8.50	9	19	45\%
3	2	B	C	38.75	8.50	11	19	60\%
3	2	C	D	38.75	8.50	11	19	60\%
3	2	D	E	38.75	8.50	12	19	65\%
3	2	E	F	38.75	8.50	11	19	60\%
3	2	F	G	38.75	8.50	11	19	60\%
3	3	A	B	38.75	8.50	8	19	40\%
3	3	B	C	38.75	8.50	5	19	25\%
3	3	C	D	38.75	8.50	7	19	35\%
3	3	D	E	38.75	8.50	8	19	40\%
3	3	E	F	38.75	8.50	7	19	35\%
3	3	F	G	38.75	8.50	6	19	30\%
3	4	A	B	38.75	8.50	5	19	25\%
3	4	B	C	38.75	8.50	6	19	30\%
3	4	C	D	38.75	8.50	6	19	30\%
3	4	D	E	38.75	8.50	6	19	30\%
3	4	E	F	38.75	8.50	7	19	35\%
3	4	F	G	38.75	8.50	7	19	35\%
4	1	A	B	38.75	8.50	8	19	40\%
4	1	B	C	38.75	8.50	8	19	40\%
4	1	C	D	38.75	8.50	11	19	60\%
4	1	D	E	38.75	8.50	11	19	60\%
4	1	E	F	38.75	8.50	7	19	35\%
4	1	F	G	38.75	8.50	7	19	35\%
4	2	A	B	38.75	8.50	11	19	60\%
4	2	B	C	38.75	8.50	12	19	65\%
4	2	C	D	38.75	8.50	12	19	65\%
4	2	D	E	38.75	8.50	10	19	55\%

Washington State

 Department of Transportation

$$
\begin{aligned}
& \mathrm{L}=\text { length between diaphragms (or length of "bay") } \\
& \mathrm{S}=\text { girder spacing }
\end{aligned}
$$

$$
\mathrm{N}_{100}=\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse crack spaced at } 2 \mathrm{ft} \text { on center) }
$$

$$
\begin{aligned}
\mathrm{N}_{\mathrm{cr}} & =\text { number of leaching cracks counted during visual inspection } \\
\% & =\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) }
\end{aligned}
$$

Avg. $=$	44%
Min. $=$	5%

							Max. $=$	80\%
Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	$\mathrm{N}_{\text {cr }}$	N_{100}	\%
4	2	E	F	38.75	8.50	11	19	60\%
4	2	F	G	38.75	8.50	11	19	60\%
4	3	A	B	38.75	8.50	13	19	70\%
4	3	B	C	38.75	8.50	15	19	80\%
4	3	C	D	38.75	8.50	15	19	80\%
4	3	D	E	38.75	8.50	14	19	75\%
4	3	E	F	38.75	8.50	13	19	70\%
4	3	F	G	38.75	8.50	13	19	70\%
4	4	A	B	38.75	8.50	10	19	55\%
4	4	B	C	38.75	8.50	11	19	60\%
4	4	C	D	38.75	8.50	14	19	75\%
4	4	D	E	38.75	8.50	13	19	70\%
4	4	E	F	38.75	8.50	12	19	65\%
4	4	F	G	38.75	8.50	9	19	45\%
5	1	A	B	38.75	8.50	4	19	20\%
5	1	B	C	38.75	8.50	5	19	25\%
5	1	C	D	38.75	8.50	5	19	25\%
5	1	D	E	38.75	8.50	5	19	25\%
5	1	E	F	38.75	8.50	4	19	20\%
5	1	F	G	38.75	8.50	7	19	35\%
5	2	A	B	38.75	8.50	10	19	55\%
5	2	B	C	38.75	8.50	9	19	45\%
5	2	C	D	38.75	8.50	8	19	40\%
5	2	D	E	38.75	8.50	7	19	35\%
5	2	E	F	38.75	8.50	6	19	30\%
5	2	F	G	38.75	8.50	8	19	40\%
5	3	A	B	38.75	8.50	8	19	40\%
5	3	B	C	38.75	8.50	9	19	45\%
5	3	C	D	38.75	8.50	7	19	35\%
5	3	D	E	38.75	8.50	8	19	40\%
5	3	E	F	38.75	8.50	7	19	35\%
5	3	F	G	38.75	8.50	8	19	40\%
5	4	A	B	38.75	8.50	6	19	30\%
5	4	B	C	38.75	8.50	7	19	35\%
5	4	C	D	38.75	8.50	9	19	45\%
5	4	D	E	38.75	8.50	5	19	25\%
5	4	E	F	38.75	8.50	6	19	30\%
5	4	F	G	38.75	8.50	4	19	20\%
6	1	A	B	38.07	8.50	9	19	45\%
6	1	B	C	38.07	8.50	12	19	65\%
6	1	C	D	38.07	8.50	13	19	70\%

Bridge \# 90/106N
Bridge Name \qquad Structure ID \qquad 0017852D
Contract \# 7852 Region SC \qquad Performance Deck Concrete? —
Contractor \qquad Concrete Supplier \qquad Deck Placement ≈ 2012
Bridge Description 6-Span (155' / 155' / 155' / 155' / 155' / 155'), 7-WF74G Girders (930' bridge length), 3-Lanes (56' wide roadway)

$$
\begin{aligned}
& \text { L = length between diaphragms (or length of "bay") } \\
& \mathrm{S}=\text { girder spacing }
\end{aligned}
$$

$$
\mathrm{N}_{100}=\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse crack spaced at } 2 \mathrm{ft} \text { on center) }
$$

$$
\begin{aligned}
\mathrm{N}_{\mathrm{cr}} & =\text { number of leaching cracks counted during visual inspection } \\
\% & =\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) }
\end{aligned}
$$

Avg. $=$	44%
Min.	$=5 \%$

Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	$\mathrm{N}_{\text {cr }}$	N_{100}	$\%$
6	1	D	E	38.07	8.50	12	19	65%
6	1	E	F	38.07	8.50	12	19	65%
6	1	F	G	38.07	8.50	12	19	65%
6	2	A	B	38.07	8.50	9	19	45%
6	2	B	C	38.07	8.50	10	19	55%
6	2	C	D	38.07	8.50	9	19	45%
6	2	D	E	38.07	8.50	11	19	60%
6	2	E	F	38.07	8.50	10	19	55%
6	2	F	G	38.07	8.50	10	19	55%
6	3	A	B	38.07	8.50	6	19	30%
6	3	B	C	38.07	8.50	5	19	25%
6	3	C	D	38.07	8.50	6	19	30%
6	3	D	E	38.07	8.50	9	19	45%
6	3	E	F	38.07	8.50	7	19	35%
6	3	F	G	38.07	8.50	8	19	40%
6	4	A	B	38.07	8.50	3	19	15%
6	4	B	C	38.07	8.50	5	19	25%
6	4	C	D	38.07	8.50	4	19	20%
6	4	D	E	38.07	8.50	5	19	25%
6	4	E	F	38.07	8.50	5	19	25%
6	4	F	G	38.07	8.50	3	19	15%

6/115 (SOUTH FORK CHEHALIS RIVER)

Bridge \#	6/115		Bridge Name	South Fork Chehali	iver	Structure ID		87A
Contract \#	7587	Region	n SW	Project Engineer	Collin Newell	Performance Deck		o
Contractor	Scarsella Bros.			Concrete Supplier	Unknown	Deck Placement	≈ 20	
Bridge Description		5-Span (160' / 160' / 160' / 142.5' / 142.5'), 5-WF74G Girders (765' bridge length), 2-Lanes (40' wide roadway)						

CONTENTS

1. Layout Plan Sheet
2. Field Notes
3. Crack Summary
4. Crack Intensity Diagram

Bridge Description 5-Span (160' / 160' / 160' / 142.5' / 142.5'), $\overline{5-W F 74 G \text { Girders (765' bridge length), 2-Lanes (40' wide roadway) }}$

$$
\begin{aligned}
& \text { L = length between diaphragms (or length of "bay") } \\
& \text { S = girder spacing }
\end{aligned}
$$

$$
\mathrm{N}_{100}=\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse crack spaced at } 2 \mathrm{ft} \text { on center) }
$$

$$
\begin{aligned}
\mathrm{N}_{\mathrm{cr}} & =\text { number of leaching cracks counted during visual inspection } \\
\% & =\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) }
\end{aligned}
$$

| Avg. $=$ | 32% |
| ---: | :---: | :---: |
| Min. $=$ | 0% |
| Max $=$ | 65% |

							Max. $=$	65\%
Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	$\mathrm{N}_{\text {cr }}$	N_{100}	\%
1	1	A	B	40.00	8.35	4	20	20\%
1	1	B	C	40.00	8.35	5	20	25\%
1	1	C	D	40.00	8.35	6	20	30\%
1	1	D	E	40.00	8.35	6	20	30\%
1	2	A	B	40.00	8.35	5	20	25\%
1	2	B	C	40.00	8.35	3	20	15\%
1	2	C	D	40.00	8.35	6	20	30\%
1	2	D	E	40.00	8.35	5	20	25\%
1	3	A	B	40.00	8.35	3	20	15\%
1	3	B	C	40.00	8.35	3	20	15\%
1	3	C	D	40.00	8.35	4	20	20\%
1	3	D	E	40.00	8.35	5	20	25\%
1	4	A	B	40.00	8.35	0	20	0\%
1	4	B	C	40.00	8.35	0	20	0\%
1	4	C	D	40.00	8.35	0	20	0\%
1	4	D	E	40.00	8.35	1	20	5\%
2	1	A	B	40.00	8.35	8	20	40\%
2	1	B	C	40.00	8.35	8	20	40\%
2	1	C	D	40.00	8.35	10	20	50\%
2	1	D	E	40.00	8.35	7	20	35\%
2	2	A	B	40.00	8.35	6	20	30\%
2	2	B	C	40.00	8.35	8	20	40\%
2	2	C	D	40.00	8.35	8	20	40\%
2	2	D	E	40.00	8.35	7	20	35\%
2	3	A	B	40.00	8.35	6	20	30\%
2	3	B	C	40.00	8.35	6	20	30\%
2	3	C	D	40.00	8.35	4	20	20\%
2	3	D	E	40.00	8.35	4	20	20\%
2	4	A	B	40.00	8.35	3	20	15\%
2	4	B	C	40.00	8.35	1	20	5\%
2	4	C	D	40.00	8.35	0	20	0\%
2	4	D	E	40.00	8.35	0	20	0\%
3	1	A	B	40.00	8.35	10	20	50\%
3	1	B	C	40.00	8.35	10	20	50\%
3	1	C	D	40.00	8.35	12	20	60\%
3	1	D	E	40.00	8.35	12	20	60\%
3	2	A	B	40.00	8.35	10	20	50\%
3	2	B	C	40.00	8.35	11	20	55\%
3	2	C	D	40.00	8.35	13	20	65\%
3	2	D	E	40.00	8.35	12	20	60\%
3	3	A	B	40.00	8.35	11	20	55\%

Bridge Description 5-Span (160' / 160' / 160' / 142.5' / 142.5'), 5-WF74G Girders (765' bridge length), 2-Lanes (40' wide roadway)

L = length between diaphragms (or length of "bay") S = girder spacing $\mathrm{N}_{100}=$ number of cracks equal to get 100% cracking severity $=\mathrm{L} / 2 \mathrm{ft}$ (transverse crack spaced at 2 ft on ce								
$\begin{aligned} \mathrm{N}_{100} & =\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse } \\ \mathrm{N}_{\mathrm{cr}} & =\text { number of leaching cracks counted during visual inspection } \\ \% & =\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest } 5 \% \text {) } \end{aligned}$							$\begin{aligned} & \text { Avg. = } \\ & \text { Min. }= \end{aligned}$	$\begin{gathered} \hline 32 \% \\ 0 \% \end{gathered}$
Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	$\mathrm{N}_{\text {cr }}$	N_{100}	\%
3	3	B	C	40.00	8.35	13	20	65\%
3	3	C	D	40.00	8.35	12	20	60\%
3	3	D	E	40.00	8.35	12	20	60\%
3	4	A	B	40.00	8.35	4	20	20\%
3	4	B	C	40.00	8.35	9	20	45\%
3	4	C	D	40.00	8.35	11	20	55\%
3	4	D	E	40.00	8.35	10	20	50\%
4	1	A	B	35.63	8.35	3	18	15\%
4	1	B	C	35.63	8.35	2	18	10\%
4	1	C	D	35.63	8.35	2	18	10\%
4	1	D	E	35.63	8.35	2	18	10\%
4	2	A	B	35.63	8.35	8	18	45\%
4	2	B	C	35.63	8.35	7	18	40\%
4	2	C	D	35.63	8.35	7	18	40\%
4	2	D	E	35.63	8.35	7	18	40\%
4	3	A	B	35.63	8.35	7	18	40\%
4	3	B	C	35.63	8.35	6	18	35\%
4	3	C	D	35.63	8.35	5	18	30\%
4	3	D	E	35.63	8.35	5	18	30\%
4	4	A	B	35.63	8.35	0	18	0\%
4	4	B	C	35.63	8.35	0	18	0\%
4	4	C	D	35.63	8.35	2	18	10\%
4	4	D	E	35.63	8.35	0	18	0\%
5	1	A	B	35.63	8.35	4	18	20\%
5	1	B	C	35.63	8.35	1	18	5\%
5	1	C	D	35.63	8.35	0	18	0\%
5	1	D	E	35.63	8.35	2	18	10\%
5	2	A	B	35.63	8.35	10	18	55\%
5	2	B	C	35.63	8.35	10	18	55\%
5	2	C	D	35.63	8.35	10	18	55\%
5	2	D	E	35.63	8.35	9	18	50\%
5	3	A	B	35.63	8.35	10	18	55\%
5	3	B	C	35.63	8.35	9	18	50\%
5	3	C	D	35.63	8.35	9	18	50\%
5	3	D	E	35.63	8.35	9	18	50\%
5	4	A	B	35.63	8.35	9	18	50\%
5	4	B	C	35.63	8.35	8	18	45\%
5	4	C	D	35.63	8.35	6	18	35\%
5	4	D	E	35.63	8.35	6	18	35\%

$100 \%=$ CRACK EVERY 2 FT .

BRIDGE NUMBER	$6 / 115$
BRIDGE NAME	SOUTH FORK CHEHALIS RIVER
INSPECTION DATE	$4 / 8 / 2015$
DECK CONCRETE	TRADITIONAL

BRIDGE 5/234W (I-5 OVER BLAKESLEE JUNCTION RAILROAD)

Bridge \#	5/234W		Name	-5 Over Blakeslee	RR	Structure ID	0018272C
Contract \#	8272	Region	SW	Project Engineer	Colin Newell	Performance Deck	te? YES
Contractor	Cascade Bridge			Concrete Supplier	Miles Sand \& Gravel	Deck Placement	3/25/2013
Bridge Description		3-Span (126' / 110' / 164.5'), 6-WF83G \& WF74G Girders (400.5' bridge length), 3-Lanes (58' wide roadway)					

CONTENTS

1. Layout Plan Sheet
2. Mix Design Summary
3. Concrete Mix Design Form
4. Concrete Test Results
5. Field Notes
6. Crack Summary
7. Crack Intensity Diagram

Washington State

Department of Transportation

Mix Design (WSDOT Form 350-040)			
Water (max) $=223$ lbs/cy $\quad \mathrm{w} / \mathrm{c}=$			$0.40 \quad \max$
Cementitious Materials	Lbs/cy	Source	Type, Class or Grade
cement	464	Lafarge	Type I-II
fly ash	116	Lafarge	Type F
slag			
latex			
microsilica			Product
Concrete Admixtures	oz/cy	Manufacturer	MB-AE-90
air entrainment	$1-15$	BASF	
water reducer			Glenium 7500
HR water reduce	$23-40$	BASF	MasterLife SRA
set retarder			
shrink. reducer	32	BASF	

Concrete Test Results			
compressive strength @ 28 days	5,507	psi	
modulus of elasticity		psi	
permeability @ 56 days	1,350	coulombs	
mix design density	145.5	$\mathrm{lb} / \mathrm{cf}$	

Shrinkage Test Results		
Dry Age	\% Length	
(days)	Change	
0	0.0000\%	
4		
7	-0.0100\%	
14	-0.0170\%	
21	-0.0260\%	
28	-0.0300\%	
56		Dry Age (days)

Aggregate						
	Comp. 1	Comp. 2	Comp. 3	Comp. 4	Comp. 5	
WSDOT Pit \#	B-329	B-329	B-329	B-333		
Grading	No. 4	No. 57	No. 8	Class 2		
\% Total	15.4%	33.3%	16.0%	35.3%		
Lbs/cy	480	1040	500	1100		
ASR Mitigation						
None Required						

Notes
Same Mix Design as:
* Bridge 5/232NCD
${ }^{*}$ Bridge 5/232SCD
Very Similar Mix Design as:
* Bridge 5/229

Contractor Cascade Bridge	Subritted By		Date $1-28-2013$
Concrete Supplier Miles Sand \& Gravel		Plant Location Rochester	
Contract Number 8272	Contract Name Blakeslee Jct to Mellen St		

This mix is to be used in the following Bid ltem No(s):
92.18.01, 93.16.01, 94.17.01

Concrete Class: (check one only)
$\square 3000 \square 4000 \square_{4000 \mathrm{D}} \square^{2}$
$\square 4000{ }^{2}$
$\square 4000 \mathrm{~W}$Concrete Overlay
Cement Concrete Pavement
\square Other Shrinkage Reducer

Remarks:

Mix Design No. 0444AFL2		Plant No. 222		
Cementitious Materials	Source	Type, Clase or Grade	Sp. Gr.	Lbs/cy
Cement	Lafarge	1-1I	3.15	464
Fly Astr ${ }^{\text {a }}$	Lafarge	F	2.54	116
GGBFS (Slag)				
Latex				
Microsilica				
Concrete Admixtures	Manufacturer	Product	Type	Est. Range (ozlcy)
Air Entrainment	BASF	ME-AE-90		1-15
Water Reducer				
High-Range Water Reducer	BASF	Glenium 7500	F	23-40
Set Retarder				
Other Shrinkage Reducer	BASF	MasterLife SRA		32

Agency Use Only (Check appropirate Box)
\square This Mix Design MEETS CONTRACT SPECIFICATIONS and may be used on the bid items noted above \square This Mx Design DOES NOT MEET CONTRACT SPECIFICATIONS and is being returned for corrections

Mix Design No. \qquad 0444 AFL 2

Plant No. 222

Aggregate information

Concrete Aggregates	$\begin{gathered} \text { Component } \\ 1 \\ \hline \end{gathered}$	Component	Component 3	Component 4	Component	Combined Gradation
WSDOT Pit No.	B-329	B-329	B-329	B-333		
WSDOT ASR 14-day Results (\%) ${ }^{\text {b }}$	\square Yes X No	\square Yes X ${ }_{\text {No }}$	\square Yes $\square_{\text {No }}$	\square Yes 区No	\square Yes \square No	
Grading ${ }^{\text {c }}$	4	57	8	Class 2		
Percent of Total Aggregate						100\%
Specific Gravity	2.71	2.69	2.68	2.65		8xew ${ }^{\text {a }}$
Lbsicy (ssd)	480	1040	500	1100		

2 inch	100	100	100	100	100	
$1-1 / 2$ inch	100	100	100	100		100
1 inch	32.6	100	100	100	89.6	
$3 / 4$ inch	1.6	80.0	100	100		78.2
$1 / 2$ inch	0.4	30.1	100	100	61.4	
$3 / 8$ inch	0.2	7.8	88.6	100	52.1	
No. 4	0.1	0.3	22.4	99.4	38.8	
No. 8	0.1	0.2	1.4	90.2		32.1
No. 16	0.1	0.1	0.2	70	24.8	
No. 30	0.1	0.1	0.2	44.1		
No. 50	0.1	0.1	0.2	20		
No. 100	0.1	0.1	0.2	6		
No. 200	0.1	0.1	0.2	1.7		

Fineness Modulus: 2.70 (Required for Class 2 Sand)
ASR Mitigation Method Proposed ${ }^{\text {b }}$:

Notes:

a Required for Class 4000D and 4000P mixes.
b Akkali Silica Reactivity Mitigation is required for sources with expansions over 0.20% - incidate method for ASR mitigation. For expansion of $0.21 \%-0.45 \%$, acceptable mitigation can be the use of low alkali cement or 25% type F fly ash. Any other proposed mitigation method or for pits with greater than 0.45% expansion, proof of mitigating measure, either ASTM C1260 / AASHTO T303 test results must be attached.
If ASTMC 1293 testing has been submitted indicating 1 -year expansion of 0.04% or less, mitigation is not required.
C AASHTO No. 467, 57, 67, 7, 8; WSDOT Class 1 , Class 2; or combined gradation. See Standard Specification 9-03.1.
d Required for Cement Concrete Pavements.
e Autach test results indicating conformance to Standard Specification 9-25.1.
f Actual Average Strengith as determined from testing or estimated from ACl 211.

Lafarge North America Concrete Lab 5400 W Marginal Way SW
Seattle, WA. 98106 Date: May 25, 2012

Subject:

 Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration: ASTM C-1202Tested Materials:

Date Sampled:	March 2012
Mix Design:	WSDOT Valley HPC

Curing: ASTM C-1202 Standard Cure

Results:

Age
56 day
90 day

Coulombs
1350
920
-The ASTM C-1202 procedure was followed.

The lest resh is call valid if the aggregate (s) sampto(s) infare) representative of the curter production and in is to be noted that lafarge has no knowledge of the representmives of the sample received for texting. Also, material quality can vary with different locations in a quarry. It is recommended that testing be carried out on an annal al basis or more fuguenly if a variation in stone quality is suspected.

Although the Lafarge North America Sente Concrete Lab, applies state-of-the-ant fest methods, Lafarge North America, and its affiliates (Lafarge) can not guaramee the result a shown above and shall assume no liability whatsoever for any errors in such results and for the consequence of such errors.

Rob Shogren, P.E.
Technical Service Engineer
Lafarge North Arnerica

Lafarge North America Concrete Lab
5400 W Marginal Way SW
Seattle, WA. 98106
Report To: Miles Sand \& Gravel
Date: May 25, 2012
Attention: Quality Control Personnel

Subject: Length Change of Hardened Hydraulic-Cement Concrete Using Procedures of ASTM C-157
Tested Material

Date Sampled:	March, 2012
Source of Aggregates:	Miles Sand \& Gravel

Mix Design: WSDOT HPC

Results:
$\left.\begin{array}{ccc}\begin{array}{c}\text { Slump: } 4.5 " \\ \text { Temp: } 64^{\text {F }}\end{array} & \begin{array}{l}\text { Specimen Size: } 4^{\prime \prime} \times 4^{\prime \prime} \times 10^{\prime \prime} \\ \text { Consolidation: } \\ \text { Initial Cure: }\end{array} \\ \text { Redding } \\ \text { Lime water submersion (28 day initial cure) }\end{array}\right\}$
-The ASTM C- 157 procedure was followed.
 the represemarives of the sample received for textile. Also, material quality can vary with different locations in a quarry. It is recommended chat testing be carried out on an annul basis ar mare frequently if a variation in stone quality is suspected.

Albough the Lafarge North America Seattle Concrete Lab. applies stare-of-he-art lest methods, Lafarge North America. and its afuliales (Lafurge) Cen n not guarantor the results shown above and shall assume no lithilily whatsoever for any errors in such results and for the consequence of such errors.

Rob Shogren, P.E.
Technical Service Engineer
Lafarge North America

Bridge Description 3-Span (126' / 110' / 164.5'), 6-WF83G \& WF74G Girders (400.5' bridge length), 3-Lanes (58' wide roadway)

$$
\begin{aligned}
& \mathrm{L}=\text { length between diaphragms (or length of "bay") } \\
& \mathrm{S}=\text { girder spacing }
\end{aligned}
$$

$$
\mathrm{N}_{100}=\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse crack spaced at } 2 \mathrm{ft} \text { on center) }
$$

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{cr}}=\text { number of leaching cracks counted during visual inspection } \\
& \%=\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) }
\end{aligned}
$$

| Avg. $=$ | 9% |
| ---: | ---: | ---: |
| Min. $=$ | 0% |
| Max $=$ | 25% |

Bridge \# 5/234W
Bridge Name \qquad Structure ID \qquad
Contract \# 8272 Region SW \qquad Performance Deck Concrete? YES
Contractor Cascade Bridge
Concrete Supplier Miles Sand \& Gravel
Deck Placement 3/25/2013
Bridge Description 3-Span (126' / 110' / 164.5'), 6-WF83G \& WF74G Girders (400.5' bridge length), 3-Lanes (58' wide roadway)

$$
\begin{aligned}
& \text { L = length between diaphragms (or length of "bay") } \\
& \mathrm{S}=\text { girder spacing }
\end{aligned}
$$

$$
\mathrm{N}_{100}=\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse crack spaced at } 2 \mathrm{ft} \text { on center) }
$$

$$
\begin{aligned}
\mathrm{N}_{\mathrm{cr}} & =\text { number of leaching cracks counted during visual inspection } \\
\% & =\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) }
\end{aligned}
$$

Avg. $=$	9%
Min. $=$	0%

Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	$\mathrm{N}_{\text {cr }}$	N_{100}	$\%$
3	2	A	B	32.27	10.43	0	16	0%
3	2	B	C	32.27	10.43	0	16	0%
3	2	C	D	32.27	10.43	1	16	5%
3	2	D	E	32.27	10.43	2	16	15%
3	2	E	F	32.27	10.43	2	16	15%
3	3	A	B	32.27	10.43	0	16	0%
3	3	B	C	32.27	10.43	0	16	0%
3	3	C	D	32.27	10.43	0	16	0%
3	3	D	E	32.27	10.43	0	16	0%
3	3	E	F	32.27	10.43	0	16	0%
3	4	A	B	32.27	10.43	0	16	0%
3	4	B	C	32.27	10.43	0	16	0%
3	4	C	D	32.27	10.43	0	16	0%
3	4	D	E	32.27	10.43	0	16	0%
3	4	E	F	32.27	10.43	0	16	0%
3	5	A	B	32.27	10.43	1	16	5%
3	5	B	C	32.27	10.43	2	16	15%
3	5	C	D	32.27	10.43	1	16	5%
3	5	D	E	32.27	10.43	0	16	0%
3	5	E	F	32.27	10.43	0	16	0%

CRACKING INTENSITY ~ BRIDGE 5/234W
100% = CRACK EVERY 2 FT.

BRIDGE NUMBER	$5 / 234 \mathrm{~W}$
BRIDGE NAME	I-5 OVER BLAKESLEE JCT RR
INSPECTION DATE	$4 / 8 / 2015$
DECK CONCRETE	PERFORMANCE BASED

BRIDGE 105/4 (NORTH RIVER)

Bridge \#	105/4		Name	North River		Structur		345B
Contract \#	8345	Region	SW	Project Engineer Concrete Supplier	Lori Figone	Performance Deck Concrete? YES		
Contractor	Scarsella Bros.				Bayview Redi Mix, Inc	Deck Placement 1/31/2014	$1 / 31 / 2014$	

Bridge Description 4-Span (120' / 160' / 160' / 160'), 4-WF83G Girders (600' bridge length), 2-Lanes (36' wide roadway)

CONTENTS

1. Layout Plan Sheet
2. Mix Design Summary
3. Concrete Mix Design Form
4. Concrete Test Results
5. Field Notes
6. Crack Summary
7. Crack Intensity Diagram

Washington State
 Department of Transportation

Bridge \#	105/4	Bridge Name		North River		Structure ID 0018345B		
Contract \#	8345	Region	SW	Project Engineer Concrete Supplier	Lori Figone	Performance Deck Concrete?		YES
Contractor	Scarsella Bros.				Bayview Redi Mix, Inc	Deck Placement	1/31/	
Bridge D	ription	Span	160'	' / 160'), 4-WF83	rders (600' bridge lent	anes (36 ' wide roadw		

Mix Design (WSDOT Form 350-040)			
Water (max) $=230$ lbs/cy \quad w/c $=0.38 \quad \max$			
Cementitious Materials	Lbs/cy	Source	Type, Class or Grade
cement	460	Ashgrove	Type I-II
fly ash	150	Lafarge	Type F
slag			
latex			
microsilica			Product
Concrete Admixtures	oz/cy	Manufacturer	Micro Air
air entrainment	$1-15$	BASF	
water reducer			Glenium 7500
HR water reduce	$20-30$	BASF	Masterlife
set retarder			
shrink. reducer	$120-140$	BASF	

Concrete Test Results			
compressive strength @ 28 days	5,691	psi	
modulus of elasticity	$4,012,122$	psi	
permeability @ 56 days	1,677	coulombs	
mix design density	150.1	$\mathrm{lb} / \mathrm{cf}$	

Shrinkage Test Results			
Dry Age	\% Length		
(days)	Change		
0	0.0060\%		
4	-0.0030\%		
7	-0.0060\%		
14	-0.0100\%		
21	-0.0160\%		
28	-0.0180\%		
56			

Aggregate						
	Comp. 1	Comp. 2	Comp. 3	Comp. 4	Comp. 5	
WSDOT Pit \#	PS-X-130	PS-X-130	PS-X-130			
Grading	$\# 67$	$\# 4$	Class II			
\% Total	42.0%	20.0%	38.0%			
Lbs/cy	1350	650	1213			
ASR Mitigation None Required						

Notes
Same Mix Design as:
${ }^{*}$ Bridge 6/8
${ }^{*}$ Bridge 101/31
${ }^{\text {}}$ Bridge 101/44
* Bridge 105/3
if swell of concrete speciman is included, total change in length
at 28 days drying is 240 microstrain $(0.0060 \%$ + $0.0180 \%)$

Washington State
Department of Transportation

Concrete Mix Design

| Contractor
 SB Structures | Submitted By
 Bayview Redi-Mix, Inc | Date
 07/22/2013 |
| :--- | :--- | :--- | :--- |
| Concrete Supplier
 Bayview Red Mix, Inc | Plant Location
 Raymond 041, Aberdeen 011 | |
| Contract Number
 R | | |

This mix is to be used in the following Bid Item Nos): $48 \& 49$
Concrete Class: (check one only) Conc. Cl. 4000 D
$\square 3000$
$\square 4000$ 区 4000 D
$\square 4000{ }^{2}$ $\square 4000 \mathrm{~W}$ Concrete Overlay
\square Cement Concrete PavementOther Shrinkage

Remarks: \qquad
Mix Design No. \qquad Plant No.
041, 011

Cementitious Materials	Source	Type, Class or Grade	Sp. Gr.	Lbs/cy
Cement	Ashgrove, Seattle, WA	Type I-II	3.15	460
Fly Ash				
GGBFS (Slag)	Lafarge, Centralia, WA	Type F	2.58	150
Latex				
Microsilica				

Concrete Admixtures	Manufacturer	Product	Type	Est. Range (oz/cy)
Air Entrainment	BASF Cleveland, OH	Micro Air		$1-15$
Water Reducer				
High-Range Water Reducer	BASF Cleveland, OH	Glenium 7500	F	$20-30$
Set Retarder				
Other Shrinkage	BASF Cleveland, OH	Masterlife		$120-140$

Agency Use Only (Check appropirate Box)
This Mix Design MEETS CONTRACT SPECIFICATIONS and may be used on the bid items noted above
\square This Mix Design DOES NOT MEET CONTRACT SPECIFICATIONS and is being returned for corrections

DOT Form 350-040 EF
Distribution: Original - Contractor
Copies To - State Materials Lab-Structural Materials Eng. ; Regional Materials Lab; Project Inspector

Mix Design No. \qquad
WSDT4DS130
Plant No. \qquad
Aggregate Information

Concrete Aggregates	Component 1	Component 2	Component 3	Component 4	Component 5	Combined Gradation
WSDOT Pit No.	PS-X-130	PS-X130	PS-X-130			
WSDOT ASR 14-day Results (\%) ${ }^{\text {b }}$	\triangle Yes \square No	\triangle Yes \square No	\triangle Yes \square No	\square Yes \square No	\square Yes \square No	
Grading ${ }^{\text {c }}$	$\begin{aligned} & \text { AAASHTO } \\ & \# 67 \\ & \hline \end{aligned}$	AAASHTO \#4	Class II			
Percent of Total Aggregate	42	20	38			100\%
Specific Gravity	2.825	2.825	2.747			
Lbs/cy (ssd)	1350	650	1213			

Fineness Modulus: 3.14 (Required for Class 2 Sand)
ASR Mitigation Method Proposed ${ }^{\text {b }}$: Not Required for this Source

Notes:

a Required for Class 4000D and 4000P mixes.
b Alkali Silica Reactivity Mitigation is required for sources with expansions over 0.20% - Incidate method for ASR mitigation. For expansion of $0.21 \%-0.45 \%$, acceptable mitigation can be the use of low alkali cement or 25% type F fly ash.
Any other proposed mitigation method or for pits with greater than 0.45% expansion, proof of mitigating measure, either ASTM C1260 / AASHTO T303 test results must be attached. If ASTM C 1293 testing has been submitted indicating 1 -year expansion of 0.04% or less, mitigation is not required.
c AASHTO No. 467, 57, 67, 7, 8; WSDOT Class 1, Class 2; or combined gradation. See Standard Specification 9-03.1.
d Required for Cement Concrete Pavements.
e Attach test results indicating conformance to Standard Specification 9-25.1.
f Actual Average Strength as determined from testing or estimated from ACl 211.
DOT Form 350-040 EF Revised 6/06

TEST RESULTS

ASTM C122 - Standard Practice for Making and Cuting Concrete Test Specimens in the Laboratory

Concrete Mixture Proportions		4,000 PSI Mix	
Trial Mix Results Caloulated to 1yd ${ }^{3}$		D-101112-01	
S-Number Description	SpG	Mass, lbs Vol Cuft	
S-121541 AG Seattle Type I/II	3.15	$462 \quad 2.35$	
S-120817 Lafarge Centralia Class F	2.58	$151 \quad 0.94$	
S-122202 Pit X-130 Fine Agg.	2.75	1,217 7.09	
S-122204 Pit X-130 1.5 to 3/4 Agg.	2.83	$652 \quad 3.69$	
S-122203 Pit X-130 3/4 to No. 4 Agg.	2.83	1,357 7.68	
--- Overland Park Municipal	1.00	233 3.73	
Air	.	5,6\% $\quad 1.51$	
	Totals:	4,072 27.00	
Admixtures			
S-Number Description		Dosage, or/cw	
S-122303 BASF Micro-Air		1.0	
S-122302 BASF Glenium 7500		4.0	
S-122225 BASF Master Life SRA 20		21.0	
Plastic Properties		D-101112-01	
Slump, in:		6.75	
Unit Weight, lbs/ cuft		150.8	
Air Content (Calculated), \%:		5.6	between 4.5 and 7.5 pols AD5 98
w / cm ratio:		0.38	
Concrete Temperature, F:		74°	

AASHTO T277-Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration Accelerated Cure

Sample Na_{2}	Diameter, in	Charge Passed. C	Corrected Charge. C	Qualitative Equivalent	Age. days D-101112-01 4.00

AASHTO T 277 - Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration Standard Cure

Sample No.	Diameter, in.	Charge Passed, C	Corrected Charge, C	Qualimative Equivalent	Age, days
D-101112-01	4.00	1,902	1,672	Low	28
	4.00	1,750	1,538	Low	56
	4.00	1,908	1,677	Low	56

ASTM C 157 Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete

Material:		Concrete
Number of Specimens per Mixture:		4
Size of Specimens, in:	Length:	10.0
	Width:	4.0
	Height:	4.0
Method of Consolidation:		4
Period of Moist Curing:		28 -days
Drying Exposure Conditions:		$23^{\circ} \mathrm{C}, 50 \% \mathrm{RH}$
Length Change	Reading	$\mathrm{D}-101112-01$
	Initial	0.000%
	a-days dry	0.006%
	4-days dry	-0.003%
	7-days dry	-0.006%
	14-days dry	-0.010%
	21-days dry	-0.016%
	28-days dry	-0.018%

ASTMC 157 - Length Change of Hydraulic-Cement Concrete

Bridge \#	105/4	Bridge Name		North River		Structure ID	0018345B
Contract \#	8345	Region	SW	Project Engineer	Lori Figone	Performance Deck Concrete?	YES
Contractor	Scarsella Bros.			Concrete Supplier	Bayview Redi Mix, Inc	Deck Placement 1/31/20	
Bridge	cription	4-Span (160'	/ 160'), 4-WF83G	irders (600' bridge leng	Lanes (36' wide roadway)	

$$
\begin{aligned}
& \mathrm{L}=\text { length between diaphragms (or length of "bay") } \\
& \mathrm{S}=\text { girder spacing }
\end{aligned}
$$

$$
\mathrm{N}_{100}=\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse crack spaced at } 2 \mathrm{ft} \text { on center) }
$$

$$
\begin{aligned}
\mathrm{N}_{\mathrm{cr}} & =\text { number of leaching cracks counted during visual inspection } \\
\% & =\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) }
\end{aligned}
$$

Avg. $=$	7%
Min. $=$	0%

Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	$\mathrm{N}_{\text {cr }}$	N_{100}	$\%$
1	1	A	B	37.63	9.75	0	19	0%
1	1	B	C	37.63	9.75	1	19	5%
1	1	C	D	37.63	9.75	0	19	0%
1	2	A	B	37.63	9.75	0	19	0%
1	2	B	C	37.63	9.75	3	19	15%
1	2	C	D	37.63	9.75	2	19	10%
1	3	A	B	37.63	9.75	\#N/A	19	\#N/A
1	3	B	C	37.63	9.75	\#N/A	19	\#N/A
1	3	C	D	37.63	9.75	\#N/A	19	\#N/A
2	1	A	B	38.13	9.75	\#N/A	19	\#N/A
2	1	B	C	38.13	9.75	\#N/A	19	\#N/A
2	1	C	D	38.13	9.75	\#N/A	19	\#N/A
2	2	A	B	38.13	9.75	\#N/A	19	\#N/A
2	2	B	C	38.13	9.75	\#N/A	19	\#N/A
2	2	C	D	38.13	9.75	\#N/A	19	\#N/A
2	3	A	B	38.13	9.75	\#N/A	19	\#N/A
2	3	B	C	38.13	9.75	\#N/A	19	\#N/A
2	3	C	D	38.13	9.75	\#N/A	19	\#N/A
2	4	A	B	38.13	9.75	\#N/A	19	\#N/A
2	4	B	C	38.13	9.75	\#N/A	19	\#N/A
2	4	C	D	38.13	9.75	\#N/A	19	\#N/A

Bridge \#	105/4		Name	North River		Structure ID	0018345B
Contract \#	8345	Region	SW	Project Engineer	Lori Figone	Performance Deck Concrete?	YES
Contractor	Scarsella Bros.			Concrete Supplier	Bayview Redi Mix, Inc	Deck Placement 1/31/2	
Bridge D	cription	4-Span (160'	' / 160'), 4-WF83G	irders (600' bridge leng	Lanes (36' wide roadway)	

L = length between diaphragms (or length of "bay") $\mathrm{S}=$ girder spacing								
$\mathrm{N}_{100}=$ number of cracks equal to get 100% cracking severity $=\mathrm{L} / 2 \mathrm{ft}$ (transverse crack spaced at 2 ft on ce								
$\begin{aligned} \mathrm{N}_{\mathrm{cr}} & =\text { number of leaching cracks counted during visual inspection } \\ \% & =\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) } \end{aligned}$							$\begin{aligned} & \text { Avg. }= \\ & \text { Min. }= \end{aligned}$	$\begin{aligned} & \hline 7 \% \\ & 0 \% \end{aligned}$
Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	N_{cr}	N_{100}	\%
3	1	A	B	38.13	9.75	\#N/A	19	\#N/A
3	1	B	C	38.13	9.75	\#N/A	19	\#N/A
3	1	C	D	38.13	9.75	\#N/A	19	\#N/A
3	2	A	B	38.13	9.75	\#N/A	19	\#N/A
3	2	B	C	38.13	9.75	\#N/A	19	\#N/A
3	2	C	D	38.13	9.75	\#N/A	19	\#N/A
3	3	A	B	38.13	9.75	\#N/A	19	\#N/A
3	3	B	C	38.13	9.75	\#N/A	19	\#N/A
3	3	C	D	38.13	9.75	\#N/A	19	\#N/A
3	4	A	B	38.13	9.75	\#N/A	19	\#N/A
3	4	B	C	38.13	9.75	\#N/A	19	\#N/A
3	4	C	D	38.13	9.75	\#N/A	19	\#N/A
4	1	A	B	38.22	9.75	3	19	15\%
4	1	B	C	38.22	9.75	5	19	25\%
4	1	C	D	38.22	9.75	4	19	20\%
4	2	A	B	38.22	9.75	2	19	10\%
4	2	B	C	38.22	9.75	2	19	10\%
4	2	C	D	38.22	9.75	2	19	10\%
4	3	A	B	38.22	9.75	0	19	0\%
4	3	B	C	38.22	9.75	0	19	0\%
4	3	C	D	38.22	9.75	0	19	0\%
4	4	A	B	38.22	9.75	0	19	0\%
4	4	B	C	38.22	9.75	0	19	0\%
4	4	C	D	38.22	9.75	0	19	0\%

CRACKING INTENSITY ~ BRIDGE 105/4
100\% = CRACK EVERY 2 FT.
$X X X=$ CRACKS NOT COUNTED DUE TO LIMITED ACCESS

BRIDGE NUMBER	$105 / 4$
BRIDGE NAME	NORTH RIVER
INSPECTION DATE	5/7/2015
DECK CONCRETE	PERFORMANCE BASED

BRIDGE 105/3 (SMITH CREEK)

CONTENTS

1. Layout Plan Sheet
2. Mix Design Summary
3. Concrete Mix Design Form
4. Concrete Test Results
5. Field Notes
6. Crack Summary
7. Crack Intensity Diagram

Washington State
 Department of Transportation

Mix Design (WSDOT Form 350-040)			
Water (max) $=230$ lbs/cy \quad w/c $=0.38 \quad \max$			
Cementitious Materials	Lbs/cy	Source	Type, Class or Grade
cement	460	Ashgrove	Type I-II
fly ash	150	Lafarge	Type F
slag			
latex			
microsilica			Product
Concrete Admixtures	oz/cy	Manufacturer	Micro Air
air entrainment	$1-15$	BASF	
water reducer			Glenium 7500
HR water reduce	$20-30$	BASF	Masterlife
set retarder			
shrink. reducer	$120-140$	BASF	

Concrete Test Results			
compressive strength @ 28 days	5,691	psi	
modulus of elasticity	$4,012,122$	psi	
permeability @ 56 days	1,677	coulombs	
mix design density	150.1	$\mathrm{lb} / \mathrm{cf}$	

Shrinkage Test Results			
Dry Age	\% Length		
(days)	Change		
0	0.0060\%		
4	-0.0030\%		
7	-0.0060\%		
14	-0.0100\%		
21	-0.0160\%		
28	-0.0180\%		
56			

Aggregate						
	Comp. 1	Comp. 2	Comp. 3	Comp. 4	Comp. 5	
WSDOT Pit \#	PS-X-130	PS-X-130	PS-X-130			
Grading	$\# 67$	$\# 4$	Class II			
\% Total	42.0%	20.0%	38.0%			
Lbs/cy	1350	650	1213			
ASR Mitigation None Required						

Notes
Same Mix Design as:
${ }^{*}$ Bridge 6/8
${ }^{*}$ Bridge 101/31
${ }^{\text {}}$ Bridge 101/44
* Bridge 105/4
if swell of concrete speciman is included, total change in length
at 28 days drying is 240 microstrain $(0.0060 \%$ + $0.0180 \%)$

Washington State
Department of Transportation

Concrete Mix Design

| Contractor
 SB Structures | Submitted By
 Bayview Redi-Mix, Inc | Date
 07/22/2013 |
| :--- | :--- | :--- | :--- |
| Concrete Supplier
 Bayview Red Mix, Inc | Plant Location
 Raymond 041, Aberdeen 011 | |
| Contract Number
 R | | |

This mix is to be used in the following Bid Item Nos): $48 \& 49$
Concrete Class: (check one only) Conc. Cl. 4000 D
$\square 3000$
$\square 4000$ 区 4000 D
$\square 4000{ }^{2}$ $\square 4000 \mathrm{~W}$ Concrete Overlay
\square Cement Concrete PavementOther Shrinkage

Remarks: \qquad
Mix Design No. \qquad Plant No.
041, 011

Cementitious Materials	Source	Type, Class or Grade	Sp. Gr.	Lbs/cy
Cement	Ashgrove, Seattle, WA	Type I-II	3.15	460
Fly Ash				
GGBFS (Slag)	Lafarge, Centralia, WA	Type F	2.58	150
Latex				
Microsilica				

Concrete Admixtures	Manufacturer	Product	Type	Est. Range (oz/cy)
Air Entrainment	BASF Cleveland, OH	Micro Air		$1-15$
Water Reducer				
High-Range Water Reducer	BASF Cleveland, OH	Glenium 7500	F	$20-30$
Set Retarder				
Other Shrinkage	BASF Cleveland, OH	Masterlife		$120-140$

Agency Use Only (Check appropirate Box)
This Mix Design MEETS CONTRACT SPECIFICATIONS and may be used on the bid items noted above
\square This Mix Design DOES NOT MEET CONTRACT SPECIFICATIONS and is being returned for corrections

DOT Form 350-040 EF
Distribution: Original - Contractor
Copies To - State Materials Lab-Structural Materials Eng. ; Regional Materials Lab; Project Inspector

Mix Design No. \qquad
WSDT4DS130
Plant No. \qquad
Aggregate Information

Concrete Aggregates	Component 1	Component 2	Component 3	Component 4	Component 5	Combined Gradation
WSDOT Pit No.	PS-X-130	PS-X130	PS-X-130			
WSDOT ASR 14-day Results (\%) ${ }^{\text {b }}$	\triangle Yes \square No	\triangle Yes \square No	\triangle Yes \square No	\square Yes \square No	\square Yes \square No	
Grading ${ }^{\text {c }}$	$\begin{aligned} & \text { AAASHTO } \\ & \# 67 \\ & \hline \end{aligned}$	AAASHTO \#4	Class II			
Percent of Total Aggregate	42	20	38			100\%
Specific Gravity	2.825	2.825	2.747			
Lbs/cy (ssd)	1350	650	1213			

Fineness Modulus: 3.14 (Required for Class 2 Sand)
ASR Mitigation Method Proposed ${ }^{\text {b }}$: Not Required for this Source

Notes:

a Required for Class 4000D and 4000P mixes.
b Alkali Silica Reactivity Mitigation is required for sources with expansions over 0.20% - Incidate method for ASR mitigation. For expansion of $0.21 \%-0.45 \%$, acceptable mitigation can be the use of low alkali cement or 25% type F fly ash.
Any other proposed mitigation method or for pits with greater than 0.45% expansion, proof of mitigating measure, either ASTM C1260 / AASHTO T303 test results must be attached. If ASTM C 1293 testing has been submitted indicating 1 -year expansion of 0.04% or less, mitigation is not required.
c AASHTO No. 467, 57, 67, 7, 8; WSDOT Class 1, Class 2; or combined gradation. See Standard Specification 9-03.1.
d Required for Cement Concrete Pavements.
e Attach test results indicating conformance to Standard Specification 9-25.1.
f Actual Average Strength as determined from testing or estimated from ACl 211.
DOT Form 350-040 EF Revised 6/06

TEST RESULTS

ASTM C122 - Standard Practice for Making and Cuting Concrete Test Specimens in the Laboratory

Concrete Mixture Proportions		4,000 PSI Mix	
Trial Mix Results Caloulated to 1yd ${ }^{3}$		D-101112-01	
S-Number Description	SpG	Mass, lbs Vol Cuft	
S-121541 AG Seattle Type I/II	3.15	$462 \quad 2.35$	
S-120817 Lafarge Centralia Class F	2.58	$151 \quad 0.94$	
S-122202 Pit X-130 Fine Agg.	2.75	1,217 7.09	
S-122204 Pit X-130 1.5 to 3/4 Agg.	2.83	$652 \quad 3.69$	
S-122203 Pit X-130 3/4 to No. 4 Agg.	2.83	1,357 7.68	
--- Overland Park Municipal	1.00	233 3.73	
Air	.	5,6\% $\quad 1.51$	
	Totals:	4,072 27.00	
Admixtures			
S-Number Description		Dosage, or/cw	
S-122303 BASF Micro-Air		1.0	
S-122302 BASF Glenium 7500		4.0	
S-122225 BASF Master Life SRA 20		21.0	
Plastic Properties		D-101112-01	
Slump, in:		6.75	
Unit Weight, lbs/ cuft		150.8	
Air Content (Calculated), \%:		5.6	between 4.5 and 7.5 pols AD5 98
w / cm ratio:		0.38	
Concrete Temperature, F:		74°	

AASHTO T277-Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration Accelerated Cure

Sample Na_{2}	Diameter, in	Charge Passed. C	Corrected Charge. C	Qualitative Equivalent	Age. days D-101112-01 4.00

AASHTO T 277 - Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration Standard Cure

Sample No.	Diameter, in.	Charge Passed, C	Corrected Charge, C	Qualimative Equivalent	Age, days
D-101112-01	4.00	1,902	1,672	Low	28
	4.00	1,750	1,538	Low	56
	4.00	1,908	1,677	Low	56

ASTM C 157 Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete

Material:		Concrete
Number of Specimens per Mixture:		4
Size of Specimens, in:	Length:	10.0
	Width:	4.0
	Height:	4.0
Method of Consolidation:		4
Period of Moist Curing:		28 -days
Drying Exposure Conditions:		$23^{\circ} \mathrm{C}, 50 \% \mathrm{RH}$
Length Change	Reading	$\mathrm{D}-101112-01$
	Initial	0.000%
	a-days dry	0.006%
	4-days dry	-0.003%
	7-days dry	-0.006%
	14-days dry	-0.010%
	21-days dry	-0.016%
	28-days dry	-0.018%

ASTMC 157 - Length Change of Hydraulic-Cement Concrete

Bridge \#	105/3 B		Bridge Name	Smith Creek		Structure ID	0018345A	
Contract \#	8345	Region	SW	Project Engineer	Lori Figone	Performance Deck	crete?	YES
Contractor	Scarsella Bros.			Concrete Supplier	Bayview Redi Mix, Inc	Deck Placement	12/17	

Bridge Description 3-Span (105' / 110' / 105'), 5-WF42G Girders (320' bridge length), 2-Lanes (36' wide roadway)

$$
\begin{aligned}
& \text { L = length between diaphragms (or length of "bay") } \\
& \text { S = girder spacing }
\end{aligned}
$$

$$
\mathrm{N}_{100}=\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse crack spaced at } 2 \mathrm{ft} \text { on center) }
$$

$$
\begin{aligned}
\mathrm{N}_{\mathrm{cr}} & =\text { number of leaching cracks counted during visual inspection } \\
\% & =\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) }
\end{aligned}
$$

Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	$\mathrm{N}_{\text {cr }}$	N_{100}	\%
1	1	A	B	35.00	7.67	0	18	0\%
1	1	B	C	35.00	7.67	0	18	0\%
1	1	C	D	35.00	7.67	0	18	0\%
1	1	D	E	35.00	7.67	0	18	0\%
1	2	A	B	35.00	7.67	0	18	0\%
1	2	B	C	35.00	7.67	0	18	0\%
1	2	C	D	35.00	7.67	0	18	0\%
1	2	D	E	35.00	7.67	0	18	0\%
1	3	A	B	35.00	7.67	3	18	15\%
1	3	B	C	35.00	7.67	4	18	20\%
1	3	C	D	35.00	7.67	3	18	15\%
1	3	D	E	35.00	7.67	4	18	20\%
2	1	A	B	35.00	7.67	\#N/A	18	\#N/A
2	1	B	C	35.00	7.67	\#N/A	18	\#N/A
2	1	C	D	35.00	7.67	\#N/A	18	\#N/A
2	1	D	E	35.00	7.67	\#N/A	18	\#N/A
2	2	A	B	35.00	7.67	\#N/A	18	\#N/A
2	2	B	C	35.00	7.67	\#N/A	18	\#N/A
2	2	C	D	35.00	7.67	\#N/A	18	\#N/A
2	2	D	E	35.00	7.67	\#N/A	18	\#N/A
2	3	A	B	35.00	7.67	\#N/A	18	\#N/A
2	3	B	C	35.00	7.67	\#N/A	18	\#N/A
2	3	C	D	35.00	7.67	\#N/A	18	\#N/A
2	3	D	E	35.00	7.67	\#N/A	18	\#N/A
3	1	A	B	35.00	7.67	2	18	10\%
3	1	B	C	35.00	7.67	3	18	15\%
3	1	C	D	35.00	7.67	4	18	20\%
3	1	D	E	35.00	7.67	3	18	15\%
3	2	A	B	35.00	7.67	0	18	0\%
3	2	B	C	35.00	7.67	1	18	5\%
3	2	C	D	35.00	7.67	1	18	5\%
3	2	D	E	35.00	7.67	0	18	0\%
3	3	A	B	35.00	7.67	0	18	0\%
3	3	B	C	35.00	7.67	0	18	0\%
3	3	C	D	35.00	7.67	0	18	0\%
3	3	D	E	35.00	7.67	0	18	0\%

CRACKING INTENSITY ~ BRIDGE 105/3

100\% = CRACK EVERY 2 FT.

$X X X=$ CRACKS NOT COUNTED DUE TO LIMITED ACCESS

BRIDGE NUMBER	$105 / 3$
BRIDGE NAME	SMITH CREEK
INSPECTION DATE	5/7/2015
DECK CONCRETE	PERFORMANCE BASED

BRIDGE 6/8 (WILLAPA RIVER)

CONTENTS

1. Layout Plan Sheet
2. Mix Design Summary
3. Concrete Mix Design Form
4. Concrete Test Results
5. Field Notes
6. Crack Summary
7. Crack Intensity Diagram

Washington State
 Department of Transportation

Mix Design (WSDOT Form 350-040)			
Water (max) $=230$ lbs/cy \quad w/c $=0.38 \quad \max$			
Cementitious Materials	Lbs/cy	Source	Type, Class or Grade
cement	460	Ashgrove	Type I-II
fly ash	150	Laafarge	Type F
slag			
latex			
microsilica			Product
Concrete Admixtures	oz/cy	Manufacturer	Micro Air
air entrainment	$1-15$	BASF	
water reducer			Glenium 7500
HR water reduce	$20-30$	BASF	Masterlife
set retarder			
shrink. reducer	$120-140$	BASF	

Concrete Test Results			
compressive strength @ 28 days	5,691	psi	
modulus of elasticity	$4,012,122$	psi	
permeability @ 56 days	1,677	coulombs	
mix design density	150.1	$\mathrm{lb} / \mathrm{cf}$	

Shrinkage Test Results			
Dry Age	\% Length		
(days)	Change		
0	0.0060\%		
4	-0.0030\%		
7	-0.0060\%		
14	-0.0100\%		
21	-0.0160\%		
28	-0.0180\%		
56			

Aggregate						
	Comp. 1	Comp. 2	Comp. 3	Comp. 4	Comp. 5	
WSDOT Pit \#	PS-X-130	PS-X-130	PS-X-130			
Grading	$\# 67$	$\# 4$	Class II			
\% Total	42.0%	20.0%	38.0%			
Lbs/cy	1350	650	1213			
ASR Mitigation None Required						

Notes
Same Mix Design as:
${ }^{\text {}}$ Bridge 101/31
${ }^{\text {}}$ Bridge 101/44
* Bridge 105/4
* Bridge 105/3
if swell of concrete speciman is included, total change in length
at 28 days drying is 240 microstrain $(0.0060 \%$ + 0.0180\%)

Concrete Mix Design

| Contractor
 Rotschy Inc | Submitted By
 Bayview Redi-Mix, Inc | Date
 $05 / 24 / 2013$ |
| :--- | :--- | :--- | :--- |
| Concrete Supplier
 Bayview Redi Mix, Inc | Plant Location
 Raymond 041, Aberdeen 011 | |
| Contract Number
 13×307 | Contract Name
 SR 6 Willapa River Bridge Replace Bridge | |

This mix is to be used in the following Bid Item Nos):
42.18 Concrete Class: (check one only)
$\square 3000 \square 4000$ 区 4000 D
$\square 4000$?4000WConcrete Overlay \qquad Cement Concrete Pavement \square Other Shrinkage

Remarks:

Agency Use Only (Check appropirate Box)
Z畀is Mix Design MEETS CONTRACT SPECIFICATIONS and may be used on the bid items noted above
\square This Mix Design DOES NOT MEET CONTRACT SPECIFICATIONS and is being returned for corrections
Reviewed By: $\underset{\text { PE Signature } D 0 \ll 15 / 2013}{\text { Date }}$

DOT Form 350-040 EF Revised 6/06

Distribution: Original - Contractor
Copies To - State Materials Lab-Structural Materials Eng. ; Regional Materials Lab; Project Inspector

Mix Design No.
WSDT4DS130
Plant No. \qquad 041, 011
Aggregate Information

Concrete Aggregates	Component 1	$\underset{2}{\text { Component }}$	$\underset{3}{\text { Component }}$	$\underset{4}{\text { Component }}$	${ }_{5}^{\text {Component }}$	Combined Gradation
WSDOT Pit No.	PS-X-130	PS-X130	PS-X-130			
WSDOT ASR 14-day Results (\%) ${ }^{\text {b }}$	区 Yes $\square_{\text {No }}$	\ Yes $\square \mathrm{No}$	区 Yes \square No	\square Yes \square No	\square Yes \square No	
Grading ${ }^{\text {c }}$	AAASHTO \#67	AAASHTO	Class II			
Percent of Total Aggregate	42	20	38			100\%
Specific Gravity	2.825	2.825	2.747			
Lbs/cy (ssd)	1350	650	1213			

Fineness Modulus: 3.14
(Required for Class 2 Sand)
ASR Mitigation Method Proposed ${ }^{\text {b }}$: Not Required for this Source

Notes:

a Required for Class 4000 D and 4000 P mixes.
b Alkali Silica Reactivity Mitigation is required for sources with expansions over 0.20% - Incidate method for ASR mitigation. For expansion of $0.21 \%-0.45 \%$, acceptable mitigation can be the use of low alkali cement or 25% type F fly ash. Any other proposed mitigation method or for pits with greater than 0.45% expansion, proof of mitigating measure, either ASTM C1260 / AASHTO T303 test results must be attached.
If ASTM C 1293 testing has been submitted indicating 1 -year expansion of 0.04% or less, mitigation is not required.
c AASHTO No. 467, 57, 67, 7, 8; WSDOT Class 1, Class 2; or combined gradation. See Standard Specification 9-03.1.
d Required for Cement Concrete Pavements.
e Attach test results indicating conformance to Standard Specification 9-25.1.
f Actual Average Strength as determined from testing or estimated from ACl 211.
DOT Form $350-040$ EF
Revised 6/06

TEST RESULTS

ASTM C 192 - Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory

Concrete Mixture Proportions
Trial Mix Reowis Caloulated to 1yd ${ }^{3}$
S-Number Desciption
S-121541 AG Seattle Type I/II
S-120817 Lafarge Centralia Class F
S-122202 Pit X-130 Fine Agg.
S-122204 Pit X-130 1.5 to $3 / 4$ Agg.
S-122203 Pit X-1303/4 to No. 4 Agg.
--- Overland Park Municipal

- Air

Admixtures

S-Number Descriprion
S-122303 BASF Micro-Air
S-122302 BASF Glenium 7500
S-122025 BASF Master Life SRA 20

4,000 PSI Mix
D-101112-0I
SpG Mass, Ibs Vol Cuft

3.15	462	2.35

2.58	151	0.94

$2.75 \quad 1,217 \quad 7.09$

2.83	652	3.69

2.83	1,357	7.68

$1.00 \quad 233 \quad 3.73$

- $\mathbf{5 . 6 \%} \quad 1.51$

Totals: 4,072 27.00

Dosage oz/cwt
1.0
4.0
21.0

D-101112-01

6.75
150.8
5.6
0.38
74°

AASHTO T 277 - Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration Accelerated Cure

Sample No.	Diameterin.	Charge Passed.C	Corrected Clarge. C	Qualitative D-101112-01	4.00

AASHTO T 277 - Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration Standard Cure

Sample No.	Diameter, in	Charge Passed. C	Corrected Charge C	Qualitative Equivalent	Age.dajs	
D-101112-01	4.00	1,902		1,672	Low	28
	4.00	1,750		1,538	Low	56
	4.00	1,908	1,677	Low	56	

ASTM C 157 Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete

Material:
Number of Specimens per Mixture: Size of Specimens, in:

Method of Consolidation:
Period of Moist Curing:
Drying Exposure Conditions:

Length Change

Concrete
4
Length: $\quad 10.0$
Width: $\quad 4.0$
Height: 4.0
4
28-days
$23^{\circ} \mathrm{C}, 50 \% \mathrm{RH}$

Reading	D- $101112-01$
Initial	0.000%
0-days dry	0.006%
4-days dry	-0.003%
7-days dry	-0.006%
14-days dry	-0.010%
21-days dry	-0.016%
28-days dry	-0.018%

ASTMC 157 - Length Change of Hydraulic-Cement Concrete

275'-0' BK. TO BK. PAV'T SEAT

FRAMING PLAN
ALI DIMENSIONS ARE NORMAL TO OR ALONG THE LLINE,
BACK OF PAVEMENT SEAT \& \& PIER UNLESS OTHEWHISE SHOWN.

Bridge \#	6/8 B		Bridge Name	Willapa River Bridge		Structure ID 0018464A		
Contract \#	8464	Region	SW	Project Engineer	Colin Newell	Performanc	ce Deck Concrete?	YES
Contractor	Rotschy, Inc.			Concrete Supplier	Bayview Redi Mix, Inc	Deck Pla	cement 12/24/13 \&	2/30/13

Bridge Description 3-Span (75' / 125' / 75'), 4-WF58G Girders (275' bridge length), 2-Lanes (36' wide roadway)

$$
\begin{aligned}
& \text { L = length between diaphragms (or length of "bay") } \\
& \mathrm{S}=\text { girder spacing }
\end{aligned}
$$

$$
\mathrm{N}_{100}=\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse crack spaced at } 2 \mathrm{ft} \text { on center) }
$$

$$
\begin{aligned}
\mathrm{N}_{\mathrm{cr}} & =\text { number of leaching cracks counted during visual inspection } \\
\% & =\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) }
\end{aligned}
$$

Avg. $=$	5%
Min. $=$	0%

Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	$\mathrm{N}_{\text {cr }}$	N_{100}	$\%$
1	1	A	B	36.23	10.00	1	18	5%
1	1	B	C	36.23	10.00	2	18	10%
1	1	C	D	36.23	10.00	1	18	5%
1	2	A	B	36.23	10.00	1	18	5%
1	2	B	C	36.23	10.00	2	18	10%
1	2	C	D	36.23	10.00	1	18	5%
2	1	A	B	41.67	10.00	0	21	0%
2	1	B	C	41.67	10.00	0	21	0%
2	1	C	D	41.67	10.00	0	21	0%
2	2	A	B	41.67	10.00	0	21	0%
2	2	B	C	41.67	10.00	0	21	0%
2	2	C	D	41.67	10.00	0	21	0%
2	3	A	B	41.67	10.00	1	21	5%
2	3	B	C	41.67	10.00	0	21	0%
2	3	C	D	41.67	10.00	1	21	5%
2	4	A	B	36.23	10.00	2	18	10%
2	4	B	C	36.23	10.00	1	18	5%
2	4	C	D	36.23	10.00	1	18	5%
2	5	A	B	36.23	10.00	1	18	5%
2	5	B	C	36.23	10.00	3	18	15%
2	5	C	D	36.23	10.00	1	18	5%

CRACKING INTENSITY ~ BRIDGE 6/8
100\% = CRACK EVERY 2 FT

BRIDGE NUMBER	$6 / 8$
BRIDGE NAME	WILLAPA RIVER
INSPECTION DATE	$5 / 7 / 2015$
DECK CONCRETE	PERFORMANCE BASED

BRIDGE 5/232NCD (SKOOKUMCHUCK RIVER NBCD)

Bridge \#	5/232NCD		Bridge Name	Skookumchuck River	NBCD	Structu		72A
Contract \#	8272	Region	- SW	Project Engineer	Colin Newell	Performance Deck	rete?	YES
Contractor	Cascade Bridge			Concrete Supplier	Miles Sand \& Gravel	Deck Placement	2/14	
3-Span (80' / 145' / 80'), 5-WF66G Girders (305' bridge length), 2-Lanes (38' wide roadway)								

CONTENTS

1. Layout Plan Sheet
2. Mix Design Summary
3. Concrete Mix Design Form
4. Concrete Test Results
5. Field Notes
6. Crack Summary
7. Crack Intensity Diagram

Washington State

Department of Transportation

Mix Design (WSDOT Form 350-040)			
Water (max) $=223$ lbs/cy \quad w/c $=0.40 \quad$ max			
Cementitious Materials	Lbs/cy	Source	Type, Class or Grade
cement	464	Lafarge	Type I-II
fly ash	116	Lafarge	Type F
slag			
latex			
microsilica			Product
Concrete Admixtures	oz/cy	Manufacturer	
air entrainment	$1-15$	BASF	MB-AE-90
water reducer			Glenium 7500
HR water reduce	$23-40$	BASF	
set retarder			MasterLife SRA
shrink. reducer	32	BASF	

Concrete Test Results		
compressive strength @ 28 days	5,507	psi
modulus of elasticity		psi
permeability @ 56 days	1,350	coulombs
mix design density	145.5	$\mathrm{lb} / \mathrm{cf}$

Shrinkage Test Results		
Dry Age	\% Length	
(days)	Change	
0	0.0000\%	
4		
7	-0.0100\%	
14	-0.0170\%	
21	-0.0260\%	
28	-0.0300\%	
56		

Aggregate						
	Comp. 1	Comp. 2	Comp. 3	Comp. 4	Comp. 5	
WSDOT Pit \#	B-329	B-329	B-329	B-333		
Grading	No. 4	No. 57	No. 8	Class 2		
\% Total	15.4%	33.3%	16.0%	35.3%		
Lbs/cy	480	1040	500	1100		
ASR Mitigation						
None Required						

Notes
Same Mix Design as:
* Bridge 5/232SCD
${ }^{*}$ Bridge 5/234W
Very Similar Mix Design as:
* Bridge 5/229

Contractor Cascade Bridge	Subritted By		Date $1-28-2013$
Concrete Supplier Miles Sand \& Gravel		Plant Location Rochester	
Contract Number 8272	Contract Name Blakeslee Jct to Mellen St		

This mix is to be used in the following Bid ltem No(s):
92.18.01, 93.16.01, 94.17.01

Concrete Class: (check one only)
$\square 3000 \square 4000 \square_{4000 \mathrm{D}} \square^{2}$
$\square 4000{ }^{2}$
$\square 4000 \mathrm{~W}$Concrete Overlay
Cement Concrete Pavement
\square Other Shrinkage Reducer

Remarks:

Mix Design No. 0444AFL2		Plant No. 222		
Cementitious Materials	Source	Type, Clase or Grade	Sp. Gr.	Lbs/cy
Cement	Lafarge	1-1I	3.15	464
Fly Astr ${ }^{\text {a }}$	Lafarge	F	2.54	116
GGBFS (Slag)				
Latex				
Microsilica				
Concrete Admixtures	Manufacturer	Product	Type	Est. Range (ozlcy)
Air Entrainment	BASF	ME-AE-90		1-15
Water Reducer				
High-Range Water Reducer	BASF	Glenium 7500	F	23-40
Set Retarder				
Other Shrinkage Reducer	BASF	MasterLife SRA		32

Agency Use Only (Check appropirate Box)
\square This Mix Design MEETS CONTRACT SPECIFICATIONS and may be used on the bid items noted above \square This Mx Design DOES NOT MEET CONTRACT SPECIFICATIONS and is being returned for corrections

Mix Design No. \qquad 0444 AFL 2

Plant No. 222

Aggregate information

Concrete Aggregates	$\begin{gathered} \text { Component } \\ 1 \\ \hline \end{gathered}$	Component	Component 3	Component 4	Component	Combined Gradation
WSDOT Pit No.	B-329	B-329	B-329	B-333		
WSDOT ASR 14-day Results (\%) ${ }^{\text {b }}$	\square Yes X No	\square Yes X ${ }_{\text {No }}$	\square Yes $\square_{\text {No }}$	\square Yes 区No	\square Yes \square No	
Grading ${ }^{\text {c }}$	4	57	8	Class 2		
Percent of Total Aggregate						100\%
Specific Gravity	2.71	2.69	2.68	2.65		8xew ${ }^{\text {a }}$
Lbsicy (ssd)	480	1040	500	1100		

2 inch	100	100	100	100	100	
$1-1 / 2$ inch	100	100	100	100		100
1 inch	32.6	100	100	100	89.6	
$3 / 4$ inch	1.6	80.0	100	100		78.2
$1 / 2$ inch	0.4	30.1	100	100	61.4	
$3 / 8$ inch	0.2	7.8	88.6	100	52.1	
No. 4	0.1	0.3	22.4	99.4	38.8	
No. 8	0.1	0.2	1.4	90.2		32.1
No. 16	0.1	0.1	0.2	70	24.8	
No. 30	0.1	0.1	0.2	44.1		
No. 50	0.1	0.1	0.2	20		
No. 100	0.1	0.1	0.2	6		
No. 200	0.1	0.1	0.2	1.7		

Fineness Modulus: 2.70 (Required for Class 2 Sand)
ASR Mitigation Method Proposed ${ }^{\text {b }}$:

Notes:

a Required for Class 4000D and 4000P mixes.
b Akkali Silica Reactivity Mitigation is required for sources with expansions over 0.20% - incidate method for ASR mitigation. For expansion of $0.21 \%-0.45 \%$, acceptable mitigation can be the use of low alkali cement or 25% type F fly ash. Any other proposed mitigation method or for pits with greater than 0.45% expansion, proof of mitigating measure, either ASTM C1260 / AASHTO T303 test results must be attached.
If ASTMC 1293 testing has been submitted indicating 1 -year expansion of 0.04% or less, mitigation is not required.
C AASHTO No. 467, 57, 67, 7, 8; WSDOT Class 1 , Class 2; or combined gradation. See Standard Specification 9-03.1.
d Required for Cement Concrete Pavements.
e Autach test results indicating conformance to Standard Specification 9-25.1.
f Actual Average Strengith as determined from testing or estimated from ACl 211.

Lafarge North America Concrete Lab 5400 W Marginal Way SW
Seattle, WA. 98106 Date: May 25, 2012

Subject:

 Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration: ASTM C-1202Tested Materials:

Date Sampled:	March 2012
Mix Design:	WSDOT Valley HPC

Curing: ASTM C-1202 Standard Cure

Results:

Age
56 day
90 day

Coulombs
1350
920
-The ASTM C-1202 procedure was followed.

The lest resh is call valid if the aggregate (s) sampto(s) infare) representative of the curter production and in is to be noted that lafarge has no knowledge of the representmives of the sample received for texting. Also, material quality can vary with different locations in a quarry. It is recommended that testing be carried out on an annal al basis or more fuguenly if a variation in stone quality is suspected.

Although the Lafarge North America Sente Concrete Lab, applies state-of-the-ant fest methods, Lafarge North America, and its affiliates (Lafarge) can not guaramee the result a shown above and shall assume no liability whatsoever for any errors in such results and for the consequence of such errors.

Rob Shogren, P.E.
Technical Service Engineer
Lafarge North Arnerica

Lafarge North America Concrete Lab
5400 W Marginal Way SW
Seattle, WA. 98106
Report To: Miles Sand \& Gravel
Date: May 25, 2012
Attention: Quality Control Personnel

Subject: Length Change of Hardened Hydraulic-Cement Concrete Using Procedures of ASTM C-157
Tested Material

Date Sampled:	March, 2012
Source of Aggregates:	Miles Sand \& Gravel

Mix Design: WSDOT HPC

Results:
$\left.\begin{array}{ccc}\begin{array}{c}\text { Slump: } 4.5 " \\ \text { Temp: } 64^{\text {F }}\end{array} & \begin{array}{l}\text { Specimen Size: } 4^{\prime \prime} \times 4^{\prime \prime} \times 10^{\prime \prime} \\ \text { Consolidation: } \\ \text { Initial Cure: }\end{array} \\ \text { Redding } \\ \text { Lime water submersion (28 day initial cure) }\end{array}\right\}$
-The ASTM C- 157 procedure was followed.
 the represemarives of the sample received for textile. Also, material quality can vary with different locations in a quarry. It is recommended chat testing be carried out on an annul basis ar mare frequently if a variation in stone quality is suspected.

Albough the Lafarge North America Seattle Concrete Lab. applies stare-of-he-art lest methods, Lafarge North America. and its afuliales (Lafurge) Cen n not guarantor the results shown above and shall assume no lithilily whatsoever for any errors in such results and for the consequence of such errors.

Rob Shogren, P.E.
Technical Service Engineer
Lafarge North America

L = length between diaphragms (or length of "bay") S = girder spacing $\mathrm{N}_{100}=$ number of cracks equal to get 100% cracking severity $=\mathrm{L} / 2 \mathrm{ft}$ (transverse crack spaced at 2 ft on ce								
$\begin{aligned} \mathrm{N}_{100} & =\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse } \\ \mathrm{N}_{\mathrm{cr}} & =\text { number of leaching cracks counted during visual inspection } \\ \% & =\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) } \end{aligned}$							$\begin{array}{r} \hline \text { Avg }= \\ \text { Min. }= \\ \text { Max. }= \\ \hline \mathrm{N}_{100} \\ \hline \end{array}$	$\begin{aligned} & \hline 2 \% \\ & 0 \% \end{aligned}$
Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	$\mathrm{N}_{\text {cr }}$		\%
1	1	A	B	40.00	8.25	0	20	0\%
1	1	B	C	40.00	8.25	1	20	5\%
1	1	C	D	40.00	8.25	2	20	10\%
1	1	D	E	40.00	8.25	1	20	5\%
1	2	A	B	40.00	8.25	0	20	0\%
1	2	B	C	40.00	8.25	0	20	0\%
1	2	C	D	40.00	8.25	1	20	5\%
1	2	D	E	40.00	8.25	1	20	5\%
2	1	D	E	36.25	8.25	0	18	0\%
2	1	D	E	36.25	8.25	0	18	0\%
2	1	D	E	36.25	8.25	0	18	0\%
2	1	D	E	36.25	8.25	0	18	0\%
2	2	D	E	36.25	8.25	\#N/A	18	\#N/A
2	2	D	E	36.25	8.25	\#N/A	18	\#N/A
2	2	D	E	36.25	8.25	\#N/A	18	\#N/A
2	2	D	E	36.25	8.25	\#N/A	18	\#N/A
2	3	D	E	36.25	8.25	\#N/A	18	\#N/A
2	3	D	E	36.25	8.25	\#N/A	18	\#N/A
2	3	D	E	36.25	8.25	\#N/A	18	\#N/A
2	3	D	E	36.25	8.25	\#N/A	18	\#N/A
2	4	D	E	36.25	8.25	0	18	0\%
2	4	D	E	36.25	8.25	0	18	0\%
2	4	D	E	36.25	8.25	2	18	10\%
2	4	D	E	36.25	8.25	0	18	0\%
3	1	D	E	40.00	8.25	0	20	0\%
3	1	D	E	40.00	8.25	0	20	0\%
3	1	D	E	40.00	8.25	0	20	0\%
3	1	D	E	40.00	8.25	0	20	0\%
3	2	D	E	40.00	8.25	0	20	0\%
3	2	D	E	40.00	8.25	1	20	5\%
3	2	D	E	40.00	8.25	0	20	0\%

CRACKING INTENSITY ~ BRIDGE 5/232NCD

100\% = CRACK EVERY 2 FT
$X X X=$ CRACKS NOT COUNTED DUE TO LIMITED ACCESS

BRIDGE NUMBER	$5 / 232 N C D$
BRIDGE NAME	SKOOKUMCHUCK RIVER NBCD
INSPECTION DATE	$4 / 8 / 2015$
DECK CONCRETE	PERFORMANCE BASED

BRIDGE 5/232SCD (SKOOKUMCHUCK RIVER SBCD)

Bridge \#	5/232		Name	Skookumchuck Rive	SBCD	Structur		72A
Contract \#	8272	Region	SW	Project Engineer	Colin Newell	Performance Deck	te?	YES
Contractor	Cascade Bridge			Concrete Supplier	Miles Sand \& Gravel	Deck Placement	3/2/2	
Bridge Description 3-Span (80' / 145' / 80'), 5-WF66G Girders (305' bridge length), 2-Lanes (38' wide roadway)		3-Span (80' / 145' / 80'), 5-WF66G Girders (305' bridge length), 2-Lanes (38' wide roadway)						

CONTENTS

1. Layout Plan Sheet
2. Mix Design Summary
3. Concrete Mix Design Form
4. Concrete Test Results
5. Field Notes
6. Crack Summary
7. Crack Intensity Diagram

Washington State

Department of Transportation

Bridge Description 3-Span (80' / 145' / 80'), 5-WF66G Girders (305' bridge length), 2-Lanes (38' wide roadway)

Mix Design (WSDOT Form 350-040)			
Water (max) $=223$ lbs/cy \quad w/c $=0.40 \quad \max$			
Cementitious Materials	Lbs/cy	Source	Type, Class or Grade
cement	464	Lafarge	Type I-II
fly ash	116	Lafarge	Type F
slag			
latex			
microsilica			Product
Concrete Admixtures	oz/cy	Manufacturer	MB-AE-90
air entrainment	$1-15$	BASF	
water reducer			Glenium 7500
HR water reduce	$23-40$	BASF	MasterLife SRA
set retarder			
shrink. reducer	32	BASF	

Concrete Test Results			
compressive strength @ 28 days	5,507	psi	
modulus of elasticity		psi	
permeability @ 56 days	1,350	coulombs	
mix design density	145.5	$\mathrm{lb} / \mathrm{cf}$	

Shrinkage Test Results		
Dry Age	\% Length	
(days)	Change	
0	0.0000\%	
4		
7	-0.0100\%	
14	-0.0170\%	
21	-0.0260\%	
28	-0.0300\%	
56		

Aggregate						
	Comp. 1	Comp. 2	Comp. 3	Comp. 4	Comp. 5	
WSDOT Pit \#	B-329	B-329	B-329	B-333		
Grading	No. 4	No. 57	No. 8	Class 2		
\% Total	15.4%	33.3%	16.0%	35.3%		
Lbs/cy	480	1040	500	1100		
ASR Mitigation None Required						

Notes
Same Mix Design as:
* Bridge 5/232NCD
${ }^{*}$ Bridge 5/234W
Very Similar Mix Design as:
* Bridge 5/229

Contractor Cascade Bridge	Subritted By		Date $1-28-2013$
Concrete Supplier Miles Sand \& Gravel		Plant Location Rochester	
Contract Number 8272	Contract Name Blakeslee Jct to Mellen St		

This mix is to be used in the following Bid ltem No(s):
92.18.01, 93.16.01, 94.17.01

Concrete Class: (check one only)
$\square 3000 \square 4000 \square_{4000 \mathrm{D}} \square^{2}$
$\square 4000{ }^{2}$
$\square 4000 \mathrm{~W}$Concrete Overlay
Cement Concrete Pavement
\square Other Shrinkage Reducer

Remarks:

Mix Design No. 0444AFL2		Plant No. 222		
Cementitious Materials	Source	Type, Clase or Grade	Sp. Gr.	Lbs/cy
Cement	Lafarge	1-1I	3.15	464
Fly Astr ${ }^{\text {a }}$	Lafarge	F	2.54	116
GGBFS (Slag)				
Latex				
Microsilica				
Concrete Admixtures	Manufacturer	Product	Type	Est. Range (ozlcy)
Air Entrainment	BASF	ME-AE-90		1-15
Water Reducer				
High-Range Water Reducer	BASF	Glenium 7500	F	23-40
Set Retarder				
Other Shrinkage Reducer	BASF	MasterLife SRA		32

Agency Use Only (Check appropirate Box)
\square This Mix Design MEETS CONTRACT SPECIFICATIONS and may be used on the bid items noted above \square This Mx Design DOES NOT MEET CONTRACT SPECIFICATIONS and is being returned for corrections

Mix Design No. \qquad 0444 AFL 2

Plant No. 222

Aggregate information

Concrete Aggregates	$\begin{gathered} \text { Component } \\ 1 \\ \hline \end{gathered}$	Component	Component 3	Component 4	Component	Combined Gradation
WSDOT Pit No.	B-329	B-329	B-329	B-333		
WSDOT ASR 14-day Results (\%) ${ }^{\text {b }}$	\square Yes X No	\square Yes X ${ }_{\text {No }}$	\square Yes $\square_{\text {No }}$	\square Yes 区No	\square Yes \square No	
Grading ${ }^{\text {c }}$	4	57	8	Class 2		
Percent of Total Aggregate						100\%
Specific Gravity	2.71	2.69	2.68	2.65		8xew ${ }^{\text {a }}$
Lbsicy (ssd)	480	1040	500	1100		

2 inch	100	100	100	100	100	
$1-1 / 2$ inch	100	100	100	100		100
1 inch	32.6	100	100	100	89.6	
$3 / 4$ inch	1.6	80.0	100	100		78.2
$1 / 2$ inch	0.4	30.1	100	100	61.4	
$3 / 8$ inch	0.2	7.8	88.6	100	52.1	
No. 4	0.1	0.3	22.4	99.4	38.8	
No. 8	0.1	0.2	1.4	90.2		32.1
No. 16	0.1	0.1	0.2	70	24.8	
No. 30	0.1	0.1	0.2	44.1		
No. 50	0.1	0.1	0.2	20		
No. 100	0.1	0.1	0.2	6		
No. 200	0.1	0.1	0.2	1.7		

Fineness Modulus: 2.70 (Required for Class 2 Sand)
ASR Mitigation Method Proposed ${ }^{\text {b }}$:

Notes:

a Required for Class 4000D and 4000P mixes.
b Akkali Silica Reactivity Mitigation is required for sources with expansions over 0.20% - incidate method for ASR mitigation. For expansion of $0.21 \%-0.45 \%$, acceptable mitigation can be the use of low alkali cement or 25% type F fly ash. Any other proposed mitigation method or for pits with greater than 0.45% expansion, proof of mitigating measure, either ASTM C1260 / AASHTO T303 test results must be attached.
If ASTMC 1293 testing has been submitted indicating 1 -year expansion of 0.04% or less, mitigation is not required.
C AASHTO No. 467, 57, 67, 7, 8; WSDOT Class 1 , Class 2; or combined gradation. See Standard Specification 9-03.1.
d Required for Cement Concrete Pavements.
e Autach test results indicating conformance to Standard Specification 9-25.1.
f Actual Average Strengith as determined from testing or estimated from ACl 211.

Lafarge North America Concrete Lab 5400 W Marginal Way SW
Seattle, WA. 98106 Date: May 25, 2012

Subject:

 Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration: ASTM C-1202Tested Materials:

Date Sampled:	March 2012
Mix Design:	WSDOT Valley HPC

Curing: ASTM C-1202 Standard Cure

Results:

Age
56 day
90 day

Coulombs
1350
920
-The ASTM C-1202 procedure was followed.

The lest resh is call valid if the aggregate (s) sampto(s) infare) representative of the curter production and in is to be noted that lafarge has no knowledge of the representmives of the sample received for texting. Also, material quality can vary with different locations in a quarry. It is recommended that testing be carried out on an annal al basis or more fuguenly if a variation in stone quality is suspected.

Although the Lafarge North America Sente Concrete Lab, applies state-of-the-ant fest methods, Lafarge North America, and its affiliates (Lafarge) can not guaramee the result a shown above and shall assume no liability whatsoever for any errors in such results and for the consequence of such errors.

Rob Shogren, P.E.
Technical Service Engineer
Lafarge North Arnerica

Lafarge North America Concrete Lab
5400 W Marginal Way SW
Seattle, WA. 98106
Report To: Miles Sand \& Gravel
Date: May 25, 2012
Attention: Quality Control Personnel

Subject: Length Change of Hardened Hydraulic-Cement Concrete Using Procedures of ASTM C-157
Tested Material

Date Sampled:	March, 2012
Source of Aggregates:	Miles Sand \& Gravel

Mix Design: WSDOT HPC

Results:
$\left.\begin{array}{ccc}\begin{array}{c}\text { Slump: } 4.5 " \\ \text { Temp: } 64^{\text {F }}\end{array} & \begin{array}{l}\text { Specimen Size: } 4^{\prime \prime} \times 4^{\prime \prime} \times 10^{\prime \prime} \\ \text { Consolidation: } \\ \text { Initial Cure: }\end{array} \\ \text { Redding } \\ \text { Lime water submersion (28 day initial cure) }\end{array}\right\}$
-The ASTM C- 157 procedure was followed.
 the represemarives of the sample received for textile. Also, material quality can vary with different locations in a quarry. It is recommended chat testing be carried out on an annul basis ar mare frequently if a variation in stone quality is suspected.

Albough the Lafarge North America Seattle Concrete Lab. applies stare-of-he-art lest methods, Lafarge North America. and its afuliales (Lafurge) Cen n not guarantor the results shown above and shall assume no lithilily whatsoever for any errors in such results and for the consequence of such errors.

Rob Shogren, P.E.
Technical Service Engineer
Lafarge North America

NOTE:
others corners similar.

Bridge \#	5/232SCD Br	Name	Skookumchuck River SBCD		Structure ID	0018272A
Contract \#	8272 Region	SW	Project Engineer	Colin Newell	Performance Deck Concrete?	YES
Contractor	Cascade Bridge		Concrete Supplier	Miles Sand \& Gravel	Deck Placement 3/2/201	3/2/2013

Bridge Description 3-Span (80' / 145' / 80'), 5-WF66G Girders (305' bridge length), 2-Lanes (38' wide roadway)

$$
\begin{aligned}
& \mathrm{L}=\text { length between diaphragms (or length of "bay") } \\
& \mathrm{S}=\text { girder spacing }
\end{aligned}
$$

$$
\mathrm{N}_{100}=\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse crack spaced at } 2 \mathrm{ft} \text { on center) }
$$

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{cr}}=\text { number of leaching cracks counted during visual inspection } \\
& \%=\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) }
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Avg. }= & 1 \% \\
\text { Min. }= & 0 \%
\end{array}
$$

							Max. =	10\%
Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	N_{cr}	N_{100}	\%
1	1	A	B	40.00	9.50	0	20	0\%
1	1	B	C	40.00	9.50	0	20	0\%
1	1	C	D	40.00	9.50	0	20	0\%
1	1	D	E	40.00	9.50	0	20	0\%
1	2	A	B	40.00	9.50	0	20	0\%
1	2	B	C	40.00	9.50	0	20	0\%
1	2	C	D	40.00	9.50	0	20	0\%
1	2	D	E	40.00	9.50	0	20	0\%
2	1	A	B	36.25	9.50	0	18	0\%
2	1	B	C	36.25	9.50	0	18	0\%
2	1	C	D	36.25	9.50	0	18	0\%
2	1	D	E	36.25	9.50	0	18	0\%
2	2	A	B	36.25	9.50	0	18	0\%
2	2	B	C	36.25	9.50	0	18	0\%
2	2	C	D	36.25	9.50	0	18	0\%
2	2	D	E	36.25	9.50	0	18	0\%
2	3	A	B	36.25	9.50	0	18	0\%
2	3	B	C	36.25	9.50	0	18	0\%
2	3	C	D	36.25	9.50	0	18	0\%
2	3	D	E	36.25	9.50	0	18	0\%
2	4	A	B	36.25	9.50	0	18	0\%
2	4	B	C	36.25	9.50	0	18	0\%
2	4	C	D	36.25	9.50	0	18	0\%
2	4	D	E	36.25	9.50	2	18	10\%
3	1	A	B	40.00	9.50	1	20	5\%
3	1	B	C	40.00	9.50	0	20	0\%
3	1	C	D	40.00	9.50	0	20	0\%
3	1	D	E	40.00	9.50	1	20	5\%
3	2	A	B	40.00	9.50	0	20	0\%
3	2	B	C	40.00	9.50	0	20	0\%
3	2	C	D	40.00	9.50	0	20	0\%
3	2	D	E	40.00	9.50	1	20	5\%

CRACKING INTENSITY ~ BRIDGE 5/232SCD

100% = CRACK EVERY 2 FT.

BRIDGE 101/44 (BONE RIVER)

Bridge \#	101/44		Name	Bone River		Structur		292A
Contract \#	8292	Region	SW	Project Engineer	Lori Figone	Performance Deck	rete?	YES
Contractor	Cascade Bridge			Concrete Supplier	Bayview Redi Mix, Inc	Deck Placement$4 / 2 4 \longdiv { 2 0 1 3 }$		
3-Span (97' / 140' / 97'), 4-WF74G Girders (334" bridge length), 2-Lanes (36' wide roadway)								

CONTENTS

1. Layout Plan Sheet
2. Mix Design Summary
3. Concrete Mix Design Form
4. Concrete Test Results
5. Field Notes
6. Crack Summary
7. Crack Intensity Diagram

Washington State
 Department of Transportation

Mix Design (WSDOT Form 350-040)			
Water (max) $=230$ lbs/cy \quad w/c $=0.38 \quad \max$			
Cementitious Materials	Lbs/cy	Source	Type, Class or Grade
cement	460	Ashgrove	Type I-II
fly ash	150	Lafarge	Type F
slag			
latex			
microsilica			Product
Concrete Admixtures	oz/cy	Manufacturer	Micro Air
air entrainment	$1-15$	BASF	
water reducer			Glenium 7500
HR water reduce	$20-30$	BASF	Masterlife
set retarder			
shrink. reducer	$120-140$	BASF	

Concrete Test Results			
compressive strength @ 28 days	5,691	psi	
modulus of elasticity	$4,012,122$	psi	
permeability @ 56 days	1,677	coulombs	
mix design density	150.1	$\mathrm{lb} / \mathrm{cf}$	

Shrinkage Test Results			
Dry Age	\% Length		
(days)	Change		
0	0.0060\%		
4	-0.0030\%		
7	-0.0060\%		
14	-0.0100\%		
21	-0.0160\%		
28	-0.0180\%		
56			

Aggregate						
	Comp. 1	Comp. 2	Comp. 3	Comp. 4	Comp. 5	
WSDOT Pit \#	PS-X-130	PS-X-130	PS-X-130			
Grading	$\# 67$	$\# 4$	Class II			
\% Total	42.0%	20.0%	38.0%			
Lbs/cy	1350	650	1213			
ASR Mitigation None Required						

Notes
Same Mix Design as:
${ }^{*}$ Bridge 6/8
${ }^{*}$ Bridge 101/31
${ }^{\text {}}$ Bridge 105/4
* Bridge 105/3
if swell of concrete speciman is included, total change in length
at 28 days drying is 240 microstrain $(0.0060 \%$ + $0.0180 \%)$

Remarks:

Mix Design No. \qquad WSDT4DS 130

Plant No.
011, 041

Cementitious Materials	Source	Type, Class or Grade	Sp. Gr.	Lbs/cy
Cement	C	Ashgrove, Seattle, WA	Type I-II 6.02.3(2)	3.15
Fly Ash	a	Lafarge, Centralia, WA	Type F	2.58
GGBFS (Slag)				150
Latex				
Microsilica				

Water Cementitious Ratio (Maximum) $0.38 \quad$ Mix Design Density $150.1 \quad \mathrm{lbs} / \mathrm{cf}^{\mathrm{d}}$

Design Performance	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	Average f
28 Day Compressive Strength (cylinders) psi	5,775	5,766	5,623	5,561	5,730	5,691
14 Day Flexurad Strength (beams) psi						

Agency Use Only (Check appropirate Box)

This Mix Design MEETS CONTRACT SPECIFICATIONS and may be used on the bid items noted above
\square This Mix Design DOES NOT MEET CONTRACT SPECIFICATIONS and is being returned for corrections

DOT Form 350-040 EF Revised 6/06

Distribution: Original - Contractor
Copies To - State Materials Lab-Structural Materials Eng. ; Regional Materials Lab; Project Inspector

Mix Design No.
WSDT4DS130
Plant No.
011,041

Aggregate Information

Concrete Aggregates	$\begin{gathered} \text { Component } \\ 1 \end{gathered}$	Component	$\underset{3}{\text { Component }}$	Component	$\underset{5}{\text { Component }}$	Combined Gradation
WSDOT Pit No.	PS-X-130	PS-X-130	PS-X-130			
$\begin{aligned} & \text { WSDOT ASR 14-day } \\ & \text { Results (\%) }{ }^{\text {b }} \end{aligned}$	\Yes \square No	\ Yes \square No	\Yes \square No	\square Yes \square No	\square Yes \square No	
Grading ${ }^{\text {c }}$	$\begin{aligned} & \text { AASHTO } \\ & \# 4 \end{aligned}$	$\begin{aligned} & \text { AASHTO } \\ & \# 67 \\ & \hline \end{aligned}$	Class II			
Percent of Total Aggregate	20	42	38			100\%
Specific Gravity	2.825	2.825	2.747			
Lbs/cy (ssd)	650	1350	1213			

Percent Passing

2 inch	100					100
$1-1 / 2$ inch	100	100				100
1 inch	52	100				90
$3 / 4$ inch	1	93				77
$1 / 2$ inch	1	58			63	
$3 / 8$ inch	1	30	100			51
No. 4	0	7	99			41
No. 8	0	0	78		30	
No. 16	0	0	58			
No. 30	0	0	35			
No. 50	0	0	14			
No. 100	0	0	3			
No. 200	0.1	0.1	1			

Fineness Modulus: 3.14 (Required for Class 2 Sand)

ASR Mitigation Method Proposed ${ }^{\text {b }}:$ Not Required for this Source

Notes:

a Required for Class 4000D and 4000P mixes.
b Alkali Silica Reactivity Mitigation is required for sources with expansions over 0.20% - Incidate method for ASR mitigation. For expansion of $0.21 \%-0.45 \%$, acceptable mitigation can be the use of low alkali cement or 25% type F fly ash. Any other proposed mitigation method or for pits with greater than 0.45% expansion, proof of mitigating measure, either ASTM C1260 / AASHTO T303 test results must be attached.
If ASTM C 1293 testing has been submitted indicating 1 -year expansion of 0.04% or less, mitigation is not required.
c AASHTO No. 467, 57, 67, 7, 8; WSDOT Class 1, Class 2; or combined gradation. See Standard Specification 9-03.1.
d Required for Cement Concrete Pavements.
e Attach test results indicating conformance to Standard Specification 9-25.1.
f Actual Average Strength as determined from testing or estimated from ACI 211.

TEST RESULTS

ASTM C 192-Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory
Concrete Mixture Proportions
Trial Mix Results Calculated to 1 d 3

| S-Number |
| :--- | :--- |

| Description |
| :--- | :--- |

S-121541 AG Seattle Type I/II

Admixtures

S-Number Description
Dosage, oz/cwut
S-122303 BASF Micro-Air
S-122302 BASF Glenium 7500
1.0

S-122225 BASF Master Life SRA 20
4,000 PSI Mix
D-101112-01
$\frac{\text { SpG }}{\text { Mass, lbs }} \frac{\text { Vol. Cuft }}{2.15}$

3.15	462	2.35

$\begin{array}{lll}2.58 & 151 & 0.94\end{array}$

2.75	1,217	7.09

2.83	652	3.69

2.83	1,357	7.68

$\begin{array}{lll}1.00 & 233 & 3.73\end{array}$

-	$\frac{5.6 \%}{}$	$\underline{1.51}$
Totals:	4,072	27.00

- BASE Mater

$$
4.0
$$

Plastic Properties
D-101112-01
6.75
150.8
5.6
0.38
74°

Concrete Temperature, F:
AASHTO T 277 - Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration Accelerated Cure

Sample No.	Diameter, in.	Charge Passed, C	Corrected Charge, C	Qualitative	
Squivalent	Age, days				
D-101112-01	4.00	739	650	Very Low	28

AASHTO T 277 - Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration Standard Cure

Sample No.	Diameter, in.	Charge	Corrected	Qualitative	Age, days
		Passed, C	Charge, C	Equivalent	
D-101112-01	4.00	1,902	1,672	Low	28
	4.00	1,750	1,538	Low	56
	4.00	1,908	1,677	Low	56

ASTM C 157 Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete

Material:
Number of Specimens per Mixture:
Size of Specimens, in:

Method of Consolidation:
Period of Moist Curing:
Drying Exposure Conditions:

Length Change

Reading	D-101112-01
Initial	0.000%
0-days dry	0.006%
4-days dry	-0.003%
7-days dry	-0.006%
14-days dry	-0.010%
21-days dry	-0.016%
28-days dry	-0.018%

ASTMC 157-Length Change of Hydraulic-Cement Concrete

$$
\begin{aligned}
& \text { L = length between diaphragms (or length of "bay") } \\
& \text { S = girder spacing }
\end{aligned}
$$

$$
\mathrm{N}_{100}=\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse crack spaced at } 2 \mathrm{ft} \text { on center) }
$$

$$
\begin{aligned}
\mathrm{N}_{\mathrm{cr}} & =\text { number of leaching cracks counted during visual inspection } \\
\% & =\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) }
\end{aligned}
$$

Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	N_{cr}	N_{100}	\%
1	1	A	B	31.42	9.50	0	16	0\%
1	1	B	C	31.42	9.50	0	16	0\%
1	1	C	D	31.42	9.50	0	16	0\%
1	2	A	B	31.42	9.50	0	16	0\%
1	2	B	C	31.42	9.50	0	16	0\%
1	2	C	D	31.42	9.50	0	16	0\%
1	3	A	B	31.42	9.50	0	16	0\%
1	3	B	C	31.42	9.50	0	16	0\%
1	3	C	D	31.42	9.50	0	16	0\%
2	1	A	B	35.00	9.50	\#N/A	18	\#N/A
2	1	B	C	35.00	9.50	\#N/A	18	\#N/A
2	1	C	D	35.00	9.50	\#N/A	18	\#N/A
2	2	A	B	35.00	9.50	\#N/A	18	\#N/A
2	2	B	C	35.00	9.50	\#N/A	18	\#N/A
2	2	C	D	35.00	9.50	\#N/A	18	\#N/A
2	3	A	B	35.00	9.50	\#N/A	18	\#N/A
2	3	B	C	35.00	9.50	\#N/A	18	\#N/A
2	3	C	D	35.00	9.50	\#N/A	18	\#N/A
2	4	A	B	35.00	9.50	\#N/A	18	\#N/A
2	4	B	C	35.00	9.50	\#N/A	18	\#N/A
2	4	C	D	35.00	9.50	\#N/A	18	\#N/A
3	1	A	B	31.42	9.50	0	16	0\%
3	1	B	C	31.42	9.50	0	16	0\%
3	1	C	D	31.42	9.50	0	16	0\%
3	2	A	B	31.42	9.50	0	16	0\%
3	2	B	C	31.42	9.50	0	16	0\%
3	2	C	D	31.42	9.50	0	16	0\%
3	3	A	B	31.42	9.50	0	16	0\%
3	3	B	C	31.42	9.50	0	16	0\%
3	3	C	D	31.42	9.50	1	16	5\%

CRACKING INTENSITY ~ BRIDGE 101/44

100\% = CRACK EVERY 2 FT.
$\mathrm{X} \times \mathrm{X}=$ CRACKS NOT COUNTED DUE TO LIMITED ACCESS

BRIDGE NUMBER	$101 / 44$
BRIDGE NAME	BONE RIVER
INSPECTION DATE	5/7/2015
DECK CONCRETE	PERFORMANCE BASED

APPENDIX D

MULTI-SPAN STEEL PLATE GIRDER BRIDGES

BRIDGE 5/434SCD (SBCD OVER SR 16)
BRIDGE 529/25 (EBEY SLOUGH)
BRIDGE 2/651W-S (W-S RAMP OVER US 2 / US 395)
BRIDGE 9/134 (PILCHUCK CREEK)

BRIDGE 5/434SCD (SBCD OVER SR 16)

CONTENTS

1. Layout Plan Sheet
2. Mix Design Summary
3. Concrete Mix Design Form
4. Concrete Test Results
5. Field Notes
6. Crack Summary
7. Crack Intensity Diagram

Washington State
 Department of Transportation

Mix Design (WSDOT Form 350-040)			
Water (max) $=217$ lbs/cy \quad w/c $=0.38 \quad$ max			
Cementitious Materials	Lbs/cy	Source	Type, Class or Grade
cement	480	Lehigh Cement Co.	Type I-II
fly ash	85	Lafarge	Type F
slag			
latex			
microsilica			Product
Concrete Admixtures	oz/cy	Manufacturer	
air entrainment	$1-6$	BASF	MB AE 90
water reducer			Glenium 3030 NS
HR water reduce	$25-45$	BASF	
set retarder			MasterLife SRA 20
shrink. reducer	$30-45$	BASF	

Concrete Test Results		
compressive strength @ 28 days	6,458	psi
modulus of elasticity		psi
permeability @ 56 days	1,463	coulombs
mix design density	146.8	$\mathrm{lb} / \mathrm{cf}$

Shrinkage Test Results			
Dry Age	\% Length	$\begin{gathered} 0.000 \% \\ -0.005 \% \\ -0.010 \% \\ -0.015 \% \\ -0.020 \% \\ -0.025 \% \\ -0.030 \% \\ -0.035 \% \end{gathered}$	
(days)	Change		
0			
4			
7	-0.0100\%		
14	-0.0180\%		
21	-0.0260\%		
28	-0.0280\%		$\begin{array}{llllllll}7 & 14 & 21 & 28 & 35 & 42 & 49 & 56\end{array}$
56			Dry Age (days)

Aggregate						
	Comp. 1	Comp. 2	Comp. 3	Comp. 4	Comp. 5	
WSDOT Pit \#	J-9	J-9	J-9			
Grading	Class 1	$\# 67$	$\# 4$			
\% Total	39.6%	45.1%	15.3%			
Lbs/cy	1265	1440	490			
ASR Mitigation Use of low alkali cement						

Notes
This is the same mix that was used for Br. 16/3W

Contractor Mowat Construction Co	Submitted By Greg Smith		Date $12 / 15 / 2011$
Concrete Supplier		Plant Location Holroyd Co．，Inc．	3131 29th Ave Sw Tumwater，WA
Contract Number	Contract Name		
8189	Nalley Valley Eastbound		

This mix is to be used in the following Bid Item No（s）：$\quad 121,122,123,124,125,126,127$
Concrete Class：（check one only）
$\square 3000$
口 4000 区 4000 D
$\square 4000{ }^{\mathrm{a}}$
\square
4000W

Concrete Overlay
\square Cement Concrete Pavement
\square Other Shrinkage Reducer

Remarks： \qquad

Mix Design No．
6091FASD
Plant No．
Tacoma（3－4）

Cementitious Materials	Source	Type，Class or Grade	Sp．Gr．	Lbs／cy
Cement	Lehigh Cement Co	Type I－II	3.15	480
Fly Ash				
GGBFS（Slag）	Lafarge	Type F	2.61	85
Latex				
Microsilica				

Concrete Admixtures	Manufacturer	Product	Type	Est．Range （oz／cy）
Air Entrainment	BASF Admixtures，Inc．	MB AE ${ }^{\text {TM } 90}$		$1-6$
Water Reducer				
High－Range Water Reducer	BASF Admixtures，Inc．	Glenium® 3030 NS	Type F	$25-45$
Set Retarder				
Other Shrinkage Reducer	BASF Admixtures，Inc．	MasterLIFE® SRA 20	Type S	$30-45$

Water（Maximum） 217 Ib		$\mathrm{lbs} / \mathrm{cy}$	Is any of the water Recycled or Reclaimed？			$\square \mathrm{Yes}{ }^{\mathrm{e}}$ 区 No
Water Cementitious Ratio（Maximum） 0.38			Mix Design Density			$\mathrm{lbs} / \mathrm{cf}^{\mathrm{d}}$
Design Performance	1	2	3	4	5	Average ${ }^{\text {f }}$
28 Day Compressive Strength（cylinders）psi	6，370	6，460	6，380	6，410	6，670	6，458
14 Day Flexurald Strength（beams）psi						

Agency Use Only（Check appropirate Box）

This Mix Design MEETS CONTRACT SPECIFICATIONS and may be used on the bid items noted above
This Mix Design DOES NOT MEET CONTRACT SPECIFICATIONS and is being returned for corrections

Distribution：Original－Contractor
Copies To－State Materials Lab－Structural Materials Eng．；Regional Materials Lab；Project Inspector

Mix Design No. \qquad Plant No. \qquad
Aggregate Information

Concrete Aggregates	Component 1	$\begin{gathered} \text { Component } \\ 2 \end{gathered}$	Component 3	Component 4	$\begin{gathered} \text { Component } \\ 5 \end{gathered}$	Combined Gradation
WSDOT Pit No.	J-9	J-9	J-9			
WSDOT ASR 14-day Results (\%) ${ }^{\text {b }}$	\Yes \square No	\triangle Yes \square No	\triangle Yes \square No	\square Yes \square No	$\square \mathrm{Yes} \square \mathrm{No}$	
Grading ${ }^{\text {c }}$	Class 1	\#67	\#4			
Percent of Total Aggregate	39.6	45.1	15.3			100\%
Specific Gravity	2.63	2.69	2.69			
Lbs/cy (ssd)	1265	1440	490			3195

Percent Passing

Fineness Modulus: \qquad (Required for Class 2 Sand)
ASR Mitigation Method Proposed ${ }^{\text {b }}$: Pit No. J-9 has ASR of 0.43 and is mitigated by the use of low alkali cement.

Notes:

a Required for Class 4000D and 4000P mixes.
b Alkali Silica Reactivity Mitigation is required for sources with expansions over 0.20% - Incidate method for ASR mitigation. For expansion of $0.21 \%-0.45 \%$, acceptable mitigation can be the use of low alkali cement or 25% type F fly ash. Any other proposed mitigation method or for pits with greater than 0.45% expansion, proof of mitigating measure, either ASTM C1260/AASHTO T303 test results must be attached.
If ASTM C 1293 testing has been submitted indicating 1-year expansion of 0.04% or less, mitigation is not required.
c AASHTO No. 467, 57, 67, 7, 8; WSDOT Class 1, Class 2; or combined gradation. See Standard Specification 9-03.1.
d Required for Cement Concrete Pavements.
e Attach test results indicating conformance to Standard Specification 9-25.1.
f Actual Average Strength as determined from testing or estimated from ACl 211.

Lafarge North America Concrete Lab
5400 W Marginal Way SW
Seattle, WA. 98106

Report To: Holroyd
Date: September 30, 2011
Attention: Quality Control Personnel

Subject:
Tested Materials:
Date Sampled:
Mix Design:

August 2, 2011
 Valley Valley HPC

Curing:

ASTM C-1202 Standard Cure

Results:

Age
Coulombs
56 day
1463
*The ASTM C-1202 procedure was followed.

The test result is only valid if the aggregates) samples) is(are) representative of the current production and it is to be noted that Lafarge has no knowledge of the representatives of the sample received for testing. Also, material quality can vary with different locations in a quarry. It is recommended that testing be carried out on an annual basis or more frequently if a variation in stone quality is suspected.

Although the Lafarge North America Seattle Concrete Lab. applies state-of-the-art test methods, Lafarge North America. and its affiliates (Lafarge) can not guarantee the results shown above and shall assume no liability whatsoever for any errors in such results and for the consequence of such errors.

Rob Shogren, P.E.
Technical Service Engineer
Lafarge North America

Lafarge North America Concrete Lab
5400 W Marginal Way SW
Seattle, WA. 98106
$\begin{array}{ll}\text { Report To: } & \begin{array}{l}\text { Holroyd } \\ \text { Quality Control Personnel }\end{array} \\ \text { Attention: } & \end{array}$

Subject: Length Change of Hardened Hydraulic-Cement Concrete Using Procedures of ASTM C-157
Tested Materials:

Date Sampled:
Source of Aggregates:

August 2, 2011
Holroyd

Mix Design:
WSDOT HPC

Results:
Slump: 4.5"
Temp: 64^{F}
Specimen Size: 4"x4"x10"
Consolidation: Nodding Initial Cure: Lime water submersion (28 day initial cure)

Percent Length Change (Average of 3)
0.010
0.018
0.026
0.028
*The ASTM C-157 procedure was followed.
The test result is only valid if the aggregates) samples) is(are) representative of the current production and it is to be noted that Lafarge has no knowledge of the representatives of the sample received for testing. Also, material quality can vary with different locations in a quarry. It is recommended that testing be carried out on an annual basis or more frequently if a variation in stone quality is suspected.

Although the Lafarge North America Seattle Concrete Lab. applies state-of-the-art test methods, Lafarge North America. and its affiliates (Lafarge) can not guarantee the results shown above and shall assume no liability whatsoever for any errors in such results and for the consequence of such errors.

Rob Shogren, P.E.
Technical Service Engineer
Lafarge North America

FRAMING PLAN - SPAN 1
ALL crosfframes are normal to new line
y measured along new line

$\text { I-5 / SR } 16$ EB NALLEY VALLEY - HOV	
new line bridge	${ }_{739}{ }^{\text {seff }}$
FRAMING PLAN SHEET 1 OF 3	${ }^{1341}$

$$
\frac{\text { FRAMING PLAN }- \text { SPAN } 2}{\text { ALL CROSSFRAMES ARE NORMAL OR RADIAL TO NEW LINE }}
$$

$5 / 434$ SCD

Bridge \# \qquad Bridge Name SBCD Over SR 16 HOV \& Ramps Structure ID \qquad
Contract \# \qquad Project Engineer Neal Uhlmeyer Concrete Supplier Holroyd Co. Performance Deck Concrete? Yes Deck Placement 11/13, 2/19/13 \& 2/26/
Contractor \qquad
\qquad
Bridge Description 3-Span (185' 220^{\prime} 85'), 3-Steel Plate Girders (590' bridge length), 1-Lane (34' wide roadway)

$$
\begin{aligned}
& \mathrm{L}=\text { length between diaphragms (or length of "bay") } \\
& \mathrm{S}=\text { girder spacing }
\end{aligned}
$$

$$
\mathrm{N}_{100}=\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse crack spaced at } 2 \mathrm{ft} \text { on center) }
$$

$$
\mathrm{N}_{\mathrm{cr}}=\text { number of leaching cracks counted during visual inspection }
$$

$$
\%=\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest } 5 \% \text {) }
$$

							$\text { Max. }=100 \%$	
Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	N_{cr}	N_{100}	\%
1	1	A	B	22.75	14.00	1	11	10\%
1	1	B	C	22.75	14.00	1	11	10\%
1	2	A	B	22.75	14.00	0	11	0\%
1	2	B	C	22.75	14.00	0	11	0\%
1	3	A	B	22.75	14.00	0	11	0\%
1	3	B	C	22.75	14.00	0	11	0\%
1	4	A	B	22.75	14.00	0	11	0\%
1	4	B	C	22.75	14.00	0	11	0\%
1	5	A	B	22.75	14.00	1	11	10\%
1	5	B	C	22.75	14.00	0	11	0\%
1	6	A	B	22.75	14.00	3	11	25\%
1	6	B	C	22.75	14.00	3	11	25\%
1	7	A	B	22.75	14.00	6	11	55\%
1	7	B	C	22.75	14.00	4	11	35\%
1	8	A	B	22.75	14.00	10	11	90\%
1	8	B	C	22.75	14.00	8	11	75\%
2	1	A	B	18.41	14.00	8	9	90\%
2	1	B	C	18.41	14.00	11	9	100\%
2	2	A	B	18.41	14.00	7	9	80\%
2	2	B	C	18.41	14.00	5	9	55\%
2	3	A	B	18.38	14.00	3	9	35\%
2	3	B	C	18.38	14.00	5	9	55\%
2	4	A	B	18.31	14.00	2	9	20\%
2	4	B	C	18.31	14.00	3	9	35\%
2	5	A	B	18.31	14.00	6	9	65\%
2	5	B	C	18.31	14.00	9	9	100\%
2	6	A	B	18.31	14.00	6	9	65\%
2	6	B	C	18.31	14.00	11	9	100\%
2	7	A	B	18.31	14.00	8	9	90\%
2	7	B	C	18.31	14.00	12	9	100\%
2	8	A	B	18.31	14.00	6	9	65\%
2	8	B	C	18.31	14.00	11	9	100\%
2	9	A	B	18.31	14.00	2	9	20\%
2	9	B	C	18.31	14.00	5	9	55\%
2	10	A	B	18.31	14.00	4	9	45\%
2	10	B	C	18.31	14.00	2	9	20\%
2	11	A	B	18.31	14.00	4	9	45\%
2	11	B	C	18.31	14.00	4	9	45\%
2	12	A	B	18.31	14.00	7	9	80\%
2	12	B	C	18.31	14.00	5	9	55\%
3	1	A	B	18.31	14.00	6	9	65\%

Bridge \# \qquad Bridge Name SBCD Over SR 16 HOV \& Ramps Project Engineer Neal Uhlmeyer Structure ID \qquad 0018189B
Contract \# 8189 Region OR
Contractor \qquad Concrete Supplier

Holroyd Co. Performance Deck Concrete? Yes

Bridge Description 3-Span (185' / 220' / 185'), 3-Steel Plate Girders (590' bridge length), 1-Lane (34' wide roadway)

$$
\begin{aligned}
& \mathrm{L}=\text { length between diaphragms (or length of "bay") } \\
& \mathrm{S}=\text { girder spacing }
\end{aligned}
$$

$\mathrm{N}_{100}=$ number of cracks equal to get 100% cracking severity $=\mathrm{L} / 2 \mathrm{ft}$ (transverse crack spaced at 2 ft on center)

$$
\begin{aligned}
\mathrm{N}_{\mathrm{cr}} & =\text { number of leaching cracks counted during visual inspection } \\
\% & =\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) }
\end{aligned}
$$

$$
\text { Avg. }=36 \%
$$

Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	$\mathrm{N}_{\text {cr }}$	N_{100}	$\%$
3	1	B	C	18.31	14.00	7	9	80%
3	2	A	B	18.31	14.00	2	9	20%
3	2	B	C	18.31	14.00	2	9	20%
3	3	A	B	18.31	14.00	2	9	20%
3	3	B	C	18.31	14.00	1	9	10%
3	4	A	B	18.31	14.00	0	9	0%
3	4	B	C	18.31	14.00	1	9	10%
3	5	A	B	18.31	14.00	1	9	10%
3	5	B	C	18.31	14.00	1	9	10%
3	6	A	B	18.31	14.00	0	9	0%
3	6	B	C	18.31	14.00	2	9	20%
3	7	A	B	18.31	14.00	0	9	0%
3	7	B	C	18.31	14.00	0	9	0%
3	8	A	B	18.31	14.00	0	9	0%
3	8	B	C	18.31	14.00	0	9	0%
3	9	A	B	18.31	14.00	0	9	0%
3	9	B	C	18.31	14.00	0	9	0%
3	10	A	B	17.94	14.00	0	9	0%
3	10	B	C	17.94	14.00	1	9	10%

CRACKING INTENSITY ~BRIDGE 5/434SCD
100\% = CRACK EVERY 2 FT.

BRIDGE NUMBER	$5 / 434$ SCD
BRIDGE NAME	SBCD OVER SR 16 HOV \& RAMPS
INSPECTION DATE	$5 / 29 / 2015$
DECK CONCRETE	PERFORMANCE BASED

BRIDGE 529/25 (EBEY SLOUGH)

Bridge \#	529/25		Name	Ebey Slough		Structure ID 00	48A
Contract \#	7948	Region	NW	Project Engineer	Mark Sawyer	Performance Deck Concrete?	No
Contractor	Granite Construction			Concrete Supplier		Deck Placement $\quad \approx 2$	
Bridge Description		4-Span (115' / 160' / 160' / 170'), 7-Steel Plate Girders (680' bridge length), 4-Lanes (58' wide roadway)					

CONTENTS

1. Layout Plan Sheet
2. Field Notes
3. Crack Summary
4. Crack Intensity Diagram

GIRDER FRAMING PLAN ~SPANS $1 \& 2$
All LENGTHS ARE MEASURED HORIZONTALLY AND ARE ALONG q OF THE bRIDGE.
CROSSFRAMES ARE PERPENOICULAR TO THE MLINE.
1 THRU 14- NOTE:

Washington State

 Department of Transportation| Bridge \# | 529/25 | Bridge Name | | Ebey Slough | | Structure ID | 0017948A | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Contract \# | 7948 | Region | NW | Project Engineer | Mark Sawyer | Performance Deck | | No |
| Contractor | Granite Construction | | | Concrete Supplier | | Deck Placement $\quad \approx 20012$ | | |

Bridge Description 4-Span (115' / 160' / 160' / 170'), 7-Steel Plate Girders (680' bridge length), 4-Lanes (58' wide roadway)

$\mathrm{S}=$ girder spacing								
$\mathrm{N}_{100}=$ number of cracks equal to get 100\% cracking severity $=\mathrm{L} / 2 \mathrm{ft}$ (transverse crack spaced at 2 ft on ce								
$\begin{aligned} \mathrm{N}_{\mathrm{cr}} & =\text { number of leaching cracks counted during visual inspection } \\ \% & =\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest } 5 \% \text {) } \end{aligned}$							$\begin{aligned} & \text { Avg. = } \\ & \text { Min. }= \end{aligned}$	$\begin{gathered} 36 \% \\ 0 \% \end{gathered}$
Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	N_{cr}	N_{100}	\%
1	1	A	B	22.50	10.50	2	11	20\%
1	1	B	C	22.50	10.50	2	11	20\%
1	1	C	D	22.50	10.50	2	11	20\%
1	1	D	E	22.50	10.50	2	11	20\%
1	1	E	F	22.50	10.50	2	11	20\%
1	1	F	G	22.50	10.50	5	11	45\%
1	2	A	B	22.50	10.50	2	11	20\%
1	2	B	C	22.50	10.50	0	11	0\%
1	2	C	D	22.50	10.50	1	11	10\%
1	2	D	E	22.50	10.50	1	11	10\%
1	2	E	F	22.50	10.50	1	11	10\%
1	2	F	G	22.50	10.50	6	11	55\%
1	3	A	B	22.50	10.50	\#N/A	11	\#N/A
1	3	B	C	22.50	10.50	\#N/A	11	\#N/A
1	3	C	D	22.50	10.50	\#N/A	11	\#N/A
1	3	D	E	22.50	10.50	\#N/A	11	\#N/A
1	3	E	F	22.50	10.50	\#N/A	11	\#N/A
1	3	F	G	22.50	10.50	\#N/A	11	\#N/A
1	4	A	B	22.50	10.50	\#N/A	11	\#N/A
1	4	B	C	22.50	10.50	\#N/A	11	\#N/A
1	4	C	D	22.50	10.50	\#N/A	11	\#N/A
1	4	D	E	22.50	10.50	\#N/A	11	\#N/A
1	4	E	F	22.50	10.50	\#N/A	11	\#N/A
1	4	F	G	22.50	10.50	\#N/A	11	\#N/A
1	5	A	B	21.50	10.50	\#N/A	11	\#N/A
1	5	B	C	21.50	10.50	\#N/A	11	\#N/A
1	5	C	D	21.50	10.50	\#N/A	11	\#N/A
1	5	D	E	21.50	10.50	\#N/A	11	\#N/A
1	5	E	F	21.50	10.50	\#N/A	11	\#N/A
1	5	F	G	21.50	10.50	\#N/A	11	\#N/A
2	1	A	B	20.00	10.50	\#N/A	10	\#N/A
2	1	B	C	20.00	10.50	\#N/A	10	\#N/A
2	1	C	D	20.00	10.50	\#N/A	10	\#N/A
2	1	D	E	20.00	10.50	\#N/A	10	\#N/A
2	1	E	F	20.00	10.50	\#N/A	10	\#N/A
2	1	F	G	20.00	10.50	\#N/A	10	\#N/A
2	2	A	B	20.00	10.50	\#N/A	10	\#N/A
2	2	B	C	20.00	10.50	\#N/A	10	\#N/A
2	2	C	D	20.00	10.50	\#N/A	10	\#N/A
2	2	D	E	20.00	10.50	\#N/A	10	\#N/A
2	2	E	F	20.00	10.50	\#N/A	10	\#N/A

Washington State Department of Transportation

Bridge \#	529/	Bridge Name		Ebey Slough			Structure ID 0017948A	
Contract \#	7948	Region	NW	Project Engineer Mark Sawyer		Performance Deck Concrete?		
Contractor	Granite Construction			Concrete Supplier		Deck Placement	≈ 20	

Bridge Description 4-Span (115' / 160' / 160' / 170'), 7-Steel Plate Girders (680' bridge length), 4-Lanes (58' wide roadway)

$\mathrm{L}=$ length between diaphragms (or length of "bay") S = girder spacing $\mathrm{N}_{100}=$ number of cracks equal to get 100% cracking severity $=\mathrm{L} / 2 \mathrm{ft}$ (transverse crack spaced at 2 ft on cen								
$\begin{aligned} \mathrm{N}_{100} & =\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse } \\ \mathrm{N}_{\mathrm{cr}} & =\text { number of leaching cracks counted during visual inspection } \\ \% & =\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) } \end{aligned}$							$\begin{aligned} & \text { Avg. = } \\ & \text { Min. } \end{aligned}$	$\begin{gathered} \hline 36 \% \\ 0 \% \end{gathered}$
Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	N_{cr}	N_{100}	\%
2	2	F	G	20.00	10.50	\#N/A	10	\#N/A
2	3	A	B	20.00	10.50	\#N/A	10	\#N/A
2	3	B	C	20.00	10.50	\#N/A	10	\#N/A
2	3	C	D	20.00	10.50	\#N/A	10	\#N/A
2	3	D	E	20.00	10.50	\#N/A	10	\#N/A
2	3	E	F	20.00	10.50	\#N/A	10	\#N/A
2	3	F	G	20.00	10.50	\#N/A	10	\#N/A
2	4	A	B	20.00	10.50	\#N/A	10	\#N/A
2	4	B	C	20.00	10.50	\#N/A	10	\#N/A
2	4	C	D	20.00	10.50	\#N/A	10	\#N/A
2	4	D	E	20.00	10.50	\#N/A	10	\#N/A
2	4	E	F	20.00	10.50	\#N/A	10	\#N/A
2	4	F	G	20.00	10.50	\#N/A	10	\#N/A
2	5	A	B	20.00	10.50	\#N/A	10	\#N/A
2	5	B	C	20.00	10.50	\#N/A	10	\#N/A
2	5	C	D	20.00	10.50	\#N/A	10	\#N/A
2	5	D	E	20.00	10.50	\#N/A	10	\#N/A
2	5	E	F	20.00	10.50	\#N/A	10	\#N/A
2	5	F	G	20.00	10.50	\#N/A	10	\#N/A
2	6	A	B	20.00	10.50	\#N/A	10	\#N/A
2	6	B	C	20.00	10.50	\#N/A	10	\#N/A
2	6	C	D	20.00	10.50	\#N/A	10	\#N/A
2	6	D	E	20.00	10.50	\#N/A	10	\#N/A
2	6	E	F	20.00	10.50	\#N/A	10	\#N/A
2	6	F	G	20.00	10.50	\#N/A	10	\#N/A
2	7	A	B	20.00	10.50	\#N/A	10	\#N/A
2	7	B	C	20.00	10.50	\#N/A	10	\#N/A
2	7	C	D	20.00	10.50	\#N/A	10	\#N/A
2	7	D	E	20.00	10.50	\#N/A	10	\#N/A
2	7	E	F	20.00	10.50	\#N/A	10	\#N/A
2	7	F	G	20.00	10.50	\#N/A	10	\#N/A
2	8	A	B	20.00	10.50	\#N/A	10	\#N/A
2	8	B	C	20.00	10.50	\#N/A	10	\#N/A
2	8	C	D	20.00	10.50	\#N/A	10	\#N/A
2	8	D	E	20.00	10.50	\#N/A	10	\#N/A
2	8	E	F	20.00	10.50	\#N/A	10	\#N/A
2	8	F	G	20.00	10.50	\#N/A	10	\#N/A
3	1	A	B	20.25	10.50	\#N/A	10	\#N/A
3	1	B	C	20.25	10.50	\#N/A	10	\#N/A
3	1	C	D	20.25	10.50	\#N/A	10	\#N/A
3	1	D	E	20.25	10.50	\#N/A	10	\#N/A

Bridge \#	529/25	Bridge Name		Ebey Slough		Structure ID	0017948A	
Contract \#	7948	Region	NW	Project Engineer	Mark Sawyer	Performance Deck		No
Contractor	Granite Construction			Concrete Supplier		Deck Placement $\quad \approx 20012$		

Bridge Description 4-Span (115' / 160' / 160' / 170'), 7-Steel Plate Girders (680' bridge length), 4-Lanes (58' wide roadway)

S = girder spacing	$\mathrm{L}=$ length between diaphragms (or length of "bay")							
$\mathrm{N}_{100}=$ number of cracks equal to get 100% cracking severity $=\mathrm{L} / 2 \mathrm{ft}$ (transverse crack spaced at 2 ft on center								
$\begin{aligned} \mathrm{N}_{\mathrm{cr}} & =\text { number of leaching cracks counted during visual inspection } \\ \% & =\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest } 5 \% \text {) } \end{aligned}$							$\begin{aligned} & \text { Avg. = } \\ & \text { Min. }= \end{aligned}$	$\begin{gathered} \hline 36 \% \\ 0 \% \end{gathered}$
Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	N_{cr}	N_{100}	\%
3	1	E	F	20.25	10.50	\#N/A	10	\#N/A
3	1	F	G	20.25	10.50	\#N/A	10	\#N/A
3	2	A	B	20.25	10.50	\#N/A	10	\#N/A
3	2	B	C	20.25	10.50	\#N/A	10	\#N/A
3	2	C	D	20.25	10.50	\#N/A	10	\#N/A
3	2	D	E	20.25	10.50	\#N/A	10	\#N/A
3	2	E	F	20.25	10.50	\#N/A	10	\#N/A
3	2	F	G	20.25	10.50	\#N/A	10	\#N/A
3	3	A	B	22.00	10.50	\#N/A	11	\#N/A
3	3	B	C	22.00	10.50	\#N/A	11	\#N/A
3	3	C	D	22.00	10.50	\#N/A	11	\#N/A
3	3	D	E	22.00	10.50	\#N/A	11	\#N/A
3	3	E	F	22.00	10.50	\#N/A	11	\#N/A
3	3	F	G	22.00	10.50	\#N/A	11	\#N/A
3	4	A	B	22.00	10.50	\#N/A	11	\#N/A
3	4	B	C	22.00	10.50	\#N/A	11	\#N/A
3	4	C	D	22.00	10.50	\#N/A	11	\#N/A
3	4	D	E	22.00	10.50	\#N/A	11	\#N/A
3	4	E	F	22.00	10.50	\#N/A	11	\#N/A
3	4	F	G	22.00	10.50	\#N/A	11	\#N/A
3	5	A	B	22.00	10.50	\#N/A	11	\#N/A
3	5	B	C	22.00	10.50	\#N/A	11	\#N/A
3	5	C	D	22.00	10.50	\#N/A	11	\#N/A
3	5	D	E	22.00	10.50	\#N/A	11	\#N/A
3	5	E	F	22.00	10.50	\#N/A	11	\#N/A
3	5	F	G	22.00	10.50	\#N/A	11	\#N/A
3	6	A	B	22.00	10.50	\#N/A	11	\#N/A
3	6	B	C	22.00	10.50	\#N/A	11	\#N/A
3	6	C	D	22.00	10.50	\#N/A	11	\#N/A
3	6	D	E	22.00	10.50	\#N/A	11	\#N/A
3	6	E	F	22.00	10.50	\#N/A	11	\#N/A
3	6	F	G	22.00	10.50	\#N/A	11	\#N/A
3	7	A	B	22.00	10.50	\#N/A	11	\#N/A
3	7	B	C	22.00	10.50	\#N/A	11	\#N/A
3	7	C	D	22.00	10.50	\#N/A	11	\#N/A
3	7	D	E	22.00	10.50	\#N/A	11	\#N/A
3	7	E	F	22.00	10.50	\#N/A	11	\#N/A
3	7	F	G	22.00	10.50	\#N/A	11	\#N/A
3	8	A	B	22.00	10.50	\#N/A	11	\#N/A
3	8	B	C	22.00	10.50	\#N/A	11	\#N/A
3	8	C	D	22.00	10.50	\#N/A	11	\#N/A

Washington State

 Department of Transportation| Bridge \# | 529/25 | Bridge Name | | Ebey Slough | | Structure ID | 0017948A | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Contract \# | 7948 | Region | NW | Project Engineer | Mark Sawyer | Performance Deck | | No |
| Contractor | Granite Construction | | | Concrete Supplier | | Deck Placement $\quad \approx 20012$ | | |

Bridge Description 4-Span (115' / 160' / 160' / 170'), 7-Steel Plate Girders (680' bridge length), 4-Lanes (58' wide roadway)

$\mathrm{S}=$ girder spacing								
$\mathrm{N}_{100}=$ number of cracks equal to get 100% cracking severity $=\mathrm{L} / 2 \mathrm{ft}$ (transverse crack spaced at 2 ft on cen								
$\begin{aligned} \mathrm{N}_{\mathrm{cr}} & =\text { number of leaching cracks counted during visual inspection } \\ \% & =\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest } 5 \% \text {) } \end{aligned}$							Avg. = Min. =	$\begin{gathered} 36 \% \\ 0 \% \end{gathered}$
Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	N_{cr}	N_{100}	\%
3	8	D	E	22.00	10.50	\#N/A	11	\#N/A
3	8	E	F	22.00	10.50	\#N/A	11	\#N/A
3	8	F	G	22.00	10.50	\#N/A	11	\#N/A
3	9	A	B	22.00	10.50	\#N/A	11	\#N/A
3	9	B	C	22.00	10.50	\#N/A	11	\#N/A
3	9	C	D	22.00	10.50	\#N/A	11	\#N/A
3	9	D	E	22.00	10.50	\#N/A	11	\#N/A
3	9	E	F	22.00	10.50	\#N/A	11	\#N/A
3	9	F	G	22.00	10.50	\#N/A	11	\#N/A
3	10	A	B	20.25	10.50	\#N/A	10	\#N/A
3	10	B	C	20.25	10.50	\#N/A	10	\#N/A
3	10	C	D	20.25	10.50	\#N/A	10	\#N/A
3	10	D	E	20.25	10.50	\#N/A	10	\#N/A
3	10	E	F	20.25	10.50	\#N/A	10	\#N/A
3	10	F	G	20.25	10.50	\#N/A	10	\#N/A
3	11	A	B	20.25	10.50	\#N/A	10	\#N/A
3	11	B	C	20.25	10.50	\#N/A	10	\#N/A
3	11	C	D	20.25	10.50	\#N/A	10	\#N/A
3	11	D	E	20.25	10.50	\#N/A	10	\#N/A
3	11	E	F	20.25	10.50	\#N/A	10	\#N/A
3	11	F	G	20.25	10.50	\#N/A	10	\#N/A
4	1	A	B	21.50	10.50	\#N/A	11	\#N/A
4	1	B	C	21.50	10.50	\#N/A	11	\#N/A
4	1	C	D	21.50	10.50	\#N/A	11	\#N/A
4	1	D	E	21.50	10.50	\#N/A	11	\#N/A
4	1	E	F	21.50	10.50	\#N/A	11	\#N/A
4	1	F	G	21.50	10.50	\#N/A	11	\#N/A
4	2	A	B	21.50	10.50	\#N/A	11	\#N/A
4	2	B	C	21.50	10.50	\#N/A	11	\#N/A
4	2	C	D	21.50	10.50	\#N/A	11	\#N/A
4	2	D	E	21.50	10.50	\#N/A	11	\#N/A
4	2	E	F	21.50	10.50	\#N/A	11	\#N/A
4	2	F	G	21.50	10.50	\#N/A	11	\#N/A
4	3	A	B	21.50	10.50	\#N/A	11	\#N/A
4	3	B	C	21.50	10.50	\#N/A	11	\#N/A
4	3	C	D	21.50	10.50	\#N/A	11	\#N/A
4	3	D	E	21.50	10.50	\#N/A	11	\#N/A
4	3	E	F	21.50	10.50	\#N/A	11	\#N/A
4	3	F	G	21.50	10.50	\#N/A	11	\#N/A
4	4	A	B	20.40	10.50	\#N/A	10	\#N/A
4	4	B	C	20.40	10.50	\#N/A	10	\#N/A

Washington State

 Department of Transportation| Bridge \# | 529 | Bridge Name | | ey Slough | | Structur | 0017948A | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Contract \# | 7948 | Region | NW | Project Engineer Mark Sawyer | | Performance Deck | | No |
| Contractor | Granite Construction | | | Concrete Supplier | | Deck Placement | ≈ 2012 | |

Bridge Description 4-Span (115' / 160' / 160' / 170'), 7-Steel Plate Girders (680' bridge length), 4-Lanes (58' wide roadway)

$$
\begin{aligned}
& \mathrm{L}=\text { length between diaphragms (or length of "bay") } \\
& \mathrm{S}=\text { girder spacing }
\end{aligned}
$$

$$
\mathrm{N}_{100}=\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse crack spaced at } 2 \mathrm{ft} \text { on center) }
$$

$$
\begin{aligned}
\mathrm{N}_{\mathrm{cr}} & =\text { number of leaching cracks counted during visual inspection } \\
\% & =\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) }
\end{aligned}
$$

Avg. $=$	36%
Min. $=$	0%

Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	$\mathrm{N}_{\text {cr }}$	N_{100}	$\%$
4	4	C	D	20.40	10.50	\#N/A	10	\#N/A
4	4	D	E	20.40	10.50	\#N/A	10	\#N/A
4	4	E	F	20.40	10.50	\#N/A	10	\#N/A
4	4	F	G	20.40	10.50	\#N/A	10	\#N/A
4	5	A	B	20.40	10.50	6	10	60%
4	5	B	C	20.40	10.50	6	10	60%
4	5	C	D	20.40	10.50	8	10	80%
4	5	D	E	20.40	10.50	6	10	60%
4	5	E	F	20.40	10.50	7	10	70%
4	5	F	G	20.40	10.50	7	10	70%
4	6	A	B	20.40	10.50	5	10	50%
4	6	B	C	20.40	10.50	4	10	40%
4	6	C	D	20.40	10.50	4	10	40%
4	6	D	E	20.40	10.50	4	10	40%
4	6	E	F	20.40	10.50	4	10	40%
4	6	F	G	20.40	10.50	5	10	50%
4	7	A	B	20.40	10.50	5	10	50%
4	7	B	C	20.40	10.50	3	10	30%
4	7	C	D	20.40	10.50	3	10	30%
4	7	D	E	20.40	10.50	3	10	30%
4	7	E	F	20.40	10.50	3	10	30%
4	7	F	G	20.40	10.50	7	10	70%
4	8	A	B	20.40	10.50	1	10	10%
4	8	B	C	20.40	10.50	3	10	30%
4	8	C	D	20.40	10.50	2	10	20%
4	8	D	E	20.40	10.50	0	10	0%
4	8	E	F	20.40	10.50	2	10	20%
4	8	F	G	20.40	10.50	7	10	70%

CONSTRUCTION JOINT (TYP.)

CRACKING INTENSITY ~ BRIDGE 529/25

100\% = CRACK EVERY 2 FT.
$X X X=$ CRACKS NOT COUNTED DUE TO LIMITED ACCESS
SPANS 2 AND 3 NOT SHOWN FOR CLARITY

BRIDGE NUMBER	$529 / 25$
BRIDGE NAME	EBEY SLOUGH
INSPECTION DATE	$5 / 22 / 2015$
DECK CONCRETE	TRADITIONAL

BRIDGE 2/651W-S (W-S RAMP OVER US 2 / US 395)

CONTENTS

1. Layout Plan Sheet
2. Field Notes
3. Crack Summary
4. Crack Intensity Diagram

Washington State Department of Transportation

Bridge \# 2/651W-S Bridge Name W-S Ramp over US 2/ US 395 Structure ID \qquad Contract \# \qquad Project Engineer Bob Hilmes
Contractor \qquad Concrete Supplier \qquad Performance Deck Concrete? Deck Placement \qquad ≈ 2011
Bridge Description 6-Span (130' / 180' / 180' / 180' / 180' / 130'), 3-Steel Plate Girders (980' bridge length), 2-Lanes (38' wide roadway ,

$$
\begin{aligned}
& \mathrm{L}=\text { length between diaphragms (or length of "bay") } \\
& \mathrm{S}=\text { girder spacing }
\end{aligned}
$$

$$
\mathrm{N}_{100}=\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse crack spaced at } 2 \mathrm{ft} \text { on center) }
$$

$$
\mathrm{N}_{\mathrm{cr}}=\text { number of leaching cracks counted during visual inspection }
$$

$$
\%=\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) }
$$

)

Avg. $=$	13%
Min. $=$	0%
Max. $=$	65%

Span	Bay	Gir. Lt.	Gir Rt.	L (ft)
1	1	A		
1	1	B		18.19
1	2	A		
1	2	B		
1	3	A		
1	3	B		
1	4	A		
1	4	B		
1	5	A		

Washington State Department of Transportation

Bridge \# 2/651W-S Bridge Name W-S Ramp over US 2/ US 395 Structure ID \qquad Contract \# \qquad Project Engineer Bob Hilmes Concrete Supplier \qquad Performance Deck Concrete? Deck Placement \qquad No Contractor \qquad ≈ 2011
Bridge Description 6-Span (130' / 180' / 180' / 180' / 180' / 130'), 3-Steel Plate Girders (980' bridge length), 2-Lanes (38' wide roadway ,

$$
\begin{aligned}
& \mathrm{L}=\text { length between diaphragms (or length of "bay") } \\
& \mathrm{S}=\text { girder spacing }
\end{aligned}
$$

$$
\mathrm{N}_{100}=\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse crack spaced at } 2 \mathrm{ft} \text { on center) }
$$

$$
\mathrm{N}_{\mathrm{cr}}=\text { number of leaching cracks counted during visual inspection }
$$

$$
\%=\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) }
$$

							Max. =	65\%	
Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	$\mathrm{N}_{\text {cr }}$	N_{100}	\%	
3	4	A	B	18.00	15.00	2	9	20\%	
3	4	B	C	18.00	15.00	1	9	10\%	
3	5	A	B	18.00	15.00	0	9	0\%	
3	5	B	C	18.00	15.00	0	9	0\%	
3	6	A	B	18.00	15.00	1	9	10\%	
3	6	B	C	18.00	15.00	0	9	0\%	
3	7	A	B	18.00	15.00	1	9	10\%	
3	7	B	C	18.00	15.00	1	9	10\%	
3	8	A	B	18.00	15.00	0	9	0\%	\leftarrow construction joint counte
3	8	B	C	18.00	15.00	1	9	10\%	\leftarrow construction joint counte
3	9	A	B	18.00	15.00	1	9	10\%	
3	9	B	C	18.00	15.00	1	9	10\%	
3	10	A	B	18.00	15.00	0	9	0\%	
3	10	B	C	18.00	15.00	0	9	0\%	
4	1	A	B	18.00	15.00	1	9	10\%	
4	1	B	C	18.00	15.00	1	9	10\%	
4	2	A	B	18.00	15.00	1	9	10\%	
4	2	B	C	18.00	15.00	2	9	20\%	
4	3	A	B	18.00	15.00	0	9	0\%	\leftarrow construction joint counte
4	3	B	C	18.00	15.00	0	9	0\%	\leftarrow construction joint counte
4	4	A	B	18.00	15.00	3	9	35\%	
4	4	B	C	18.00	15.00	2	9	20\%	
4	5	A	B	18.00	15.00	1	9	10\%	
4	5	B	C	18.00	15.00	1	9	10\%	
4	6	A	B	18.00	15.00	1	9	10\%	
4	6	B	C	18.00	15.00	1	9	10\%	
4	7	A	B	18.00	15.00	1	9	10\%	
4	7	B	C	18.00	15.00	2	9	20\%	
4	8	A	B	18.00	15.00	0	9	0\%	\leftarrow construction joint counte
4	8	B	C	18.00	15.00	0	9	0\%	\leftarrow construction joint counte
4	9	A	B	18.00	15.00	0	9	0\%	
4	9	B	C	18.00	15.00	1	9	10\%	
4	10	A	B	18.00	15.00	0	9	0\%	
4	10	B	C	18.00	15.00	0	9	0\%	
5	1	A	B	18.00	15.00	0	9	0\%	
5	1	B	C	18.00	15.00	0	9	0\%	
5	2	A	B	18.00	15.00	0	9	0\%	
5	2	B	C	18.00	15.00	0	9	0\%	
5	3	A	B	18.00	15.00	1	9	10\%	\leftarrow construction joint counte
5	3	B	C	18.00	15.00	2	9	20\%	\leftarrow construction joint counte
5	4	A	B	18.00	15.00	5	9	55\%	

Bridge \# 2/651W-S Bridge Name W-S Ramp over US 2/ US 395

Structure ID \qquad Contract \# 7610 Region ER
Contractor \qquad
\qquad Bob Hilmes
Concrete Supplier Performance Deck Concrete? Deck Placement \qquad ≈ 2011
Bridge Description 6 -Span (130' / 180' / 180' / 180' / 180' / 130'), 3-Steel Plate Girders (980^{\prime} bridge length), 2-Lanes (38' wide roadway

$$
\begin{aligned}
& \text { L = length between diaphragms (or length of "bay") } \\
& \text { S = girder spacing }
\end{aligned}
$$

$$
\mathrm{N}_{100}=\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse crack spaced at } 2 \mathrm{ft} \text { on center) }
$$

$$
\begin{aligned}
\mathrm{N}_{\mathrm{cr}} & =\text { number of leaching cracks counted during visual inspection } \\
\% & =\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) }
\end{aligned}
$$

Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	N_{cr}	N_{100}	\%	
5	4	B	C	18.00	15.00	3	9	35\%	
5	5	A	B	18.00	15.00	4	9	45\%	
5	5	B	C	18.00	15.00	3	9	35\%	
5	6	A	B	18.00	15.00	3	9	35\%	
5	6	B	C	18.00	15.00	2	9	20\%	
5	7	A	B	18.00	15.00	3	9	35\%	
5	7	B	C	18.00	15.00	3	9	35\%	
5	8	A	B	18.00	15.00	1	9	10\%	\leftarrow construction joint counte
5	8	B	C	18.00	15.00	0	9	0\%	\leftarrow construction joint counte
5	9	A	B	18.00	15.00	0	9	0\%	
5	9	B	C	18.00	15.00	1	9	10\%	
5	10	A	B	18.00	15.00	1	9	10\%	
5	10	B	C	18.00	15.00	1	9	10\%	
6	1	A	B	18.00	15.00	1	9	10\%	
6	1	B	C	18.00	15.00	1	9	10\%	
6	2	A	B	18.00	15.00	0	9	0\%	
6	2	B	C	18.00	15.00	0	9	0\%	
6	3	A	B	18.00	15.00	0	9	0\%	\leftarrow construction joint counte
6	3	B	C	18.00		0	9	0\%	\leftarrow construction joint counte
6	4	A	B	18.00	15.00	2	9	20\%	
6	4	B	C	18.00	15.00	1	9	10\%	
6	5	A	B	18.00	15.00	0	9	0\%	
6	5	B	C	18.00	15.00	0	9	0\%	
6	6	A	B	18.00	15.00	0	9	0\%	
6	6	B	C	18.00	15.00	0	9	0\%	
6	7	A	B	18.00	15.00	0	9	0\%	
6	7	B	C	18.00	15.00	0	9	0\%	

CRACKING INTENSITY ~ BRIDGE 2/651W-S
100% = CRACK EVERY 2 FT.

BRIDGE NUMBER	2/651W-S
BRIDGE NAME	W-S RAMP OVER US 2/US 395
INSPECTION DATE	5/21/2015
DECK CONCRETE	TRADITIONAL

BRIDGE 9/134 (PILCHUCK CREEK)

Bridge \#	9/134		Name	Pilchuck Creek		Structure ID	0018363A
Contract \#	8383	Region	NW	Project Engineer	Dave Crisman	Performance Deck C	? Yes
Contractor	Granite Construction			Concrete Supplier	Stanwood Redi-Mix	Deck Placement 11/	12/11/13 \& 1/14/14
Bridge Description		3-Span (170' / 220' / 170'), 3-Steel Plate Girders (560' bridge length), 2-Lanes (36' wide roadway)					

CONTENTS

1. Layout Plan Sheet
2. Mix Design Summary
3. Concrete Mix Design Form
4. Concrete Test Results
5. Field Notes
6. Crack Summary
7. Crack Intensity Diagram

Mix Design (WSDOT Form 350-040)			
Water (max) $=252$ lbs/cy \quad w/c $=$		$0.41 \quad$ max	
Cementitious Materials	Lbs/cy	Source	Type, Class or Grade
cement	458	Lafarge	Type I-II
fly ash	153	Lafarge	Type F/GGBFS 50/50
slag			
latex			
microsilica			
Concrete Admixtures	oz/cy	Manufacturer	Product
air entrainment	$1-75$	WR Grace	Dravair 1000
water reducer	$1-50$	WR Grace	Zyla 610
HR water reduce	$1-75$	WR Grace	Adva 140M
set retarder			
shrink. reducer	$1-150$	WR Grace	Eclipse 4500

Concrete Test Results			
compressive strength @ 28 days	5,770	psi	
modulus of elasticity	$4,785,321$	psi	
permeability @ 56 days	1,705	coulombs	
mix design density	148.0	$\mathrm{lb} / \mathrm{cf}$	

Shrinkage Test Results			
Dry Age	\% Length	$\begin{gathered} \hline 0.000 \% \\ -0.005 \% \\ -0.010 \% \\ -0.015 \% \\ -0.020 \% \\ -0.025 \% \\ -0.030 \% \\ -0.035 \% \end{gathered}$	
(days)	Change		
0			
4			
7			
14			
21			-
28	-0.0310\%		7 14 21 28 35 42 49
56			Dry Age (days)

Aggregate					
	Comp. 1	Comp. 2	Comp. 3	Comp. 4	Comp. 5
WSDOT Pit \#	D-342	D-342	D-342	D-342	
Grading	$\# 57$	$\# 8$	Class 2	$\# 4$	
\% Total	48.0%	5.0%	39.0%	8.0%	
Lbs/cy	1476	170	1202	247	
ASR Mitigation None Required					

Notes
Although mix design indicates a range for the SRA, testing was
using a 1/4 gallon SRA
Only one number listed for "shrinkage" per AASHTO T-160,
assumed to be at 28 days of drying
Deck consisted of 5 placements, only recieved info for 4.

| Contractor
 Granite Construction Inc | Submitted By
 Stanwood Redi-Mix | Date
 $6 / 17 / 2013$ |
| :--- | :--- | :--- | :--- |
| Concrete Supplier | | |
| Stanwood Redi- Mix | Slant Location
 Silvana Wa | |
| Contract Number | Contract Name
 Pilchuck Creek Bridge | |

This mix is to be used in the following Bid Item No(s): BI-045.04.01 SUB-022.00 Concrete Class: (check one only)
$\square 3000 \quad \square 4000 \boxtimes 4000 \stackrel{\text { a }}{\mathrm{D}} \square 4000 \mathrm{P} \quad \square 4000 \mathrm{~W} \quad \square$ Concrete Overlay \square Cement Concrete Pavement
\square Other \square Other \qquad
Remarks:

Mix Design No.

$$
. \quad 78424 \mathrm{I}
$$

Cementitious Materials	Source		Type, Class or Grade		Sp. Gr.	Lbs/cy
Cement	Lafarge/Richmond, BC		Type I-II		3.10	458
Fly Ash ${ }^{\text {a }}$	Lafarge/Seattle		Type F Flyash/GGBFS 50/50		2.67	153
GGBFS (Slag)						
Latex						
Microsilica						
Concrete Admixtures	Manufacturer		Product		Type	Est. Range (oz/cy)
Air Entrainment	WR Grace		Daravair 1000			1-75
Water Reducer	WR Grace		Zyla 610		Type A	1-50
High-Range Water Reducer	WR Grace		Adva 140M		Type A-F	1-75
Set Retarder						
Other SRA	WR Grace		Eclipse 4500			1-150
Water (Maximum) 252 lbs/cy			s any of the water Recycled or Reclaimed?			es ${ }^{\text {e }}$ 区 No
Water Cementitious Ratio (Maximum) 0.41			Mix Design Density		148	$\ldots \mathrm{lbs} / \mathrm{ff}^{\mathrm{d}}$
Design Performance	1	2	3	4	5	Average ${ }^{f}$
28 Day Compressive Strength (cylinders) psi	5,780	5,700	5,830			5,770
14 Day Flexurald Strength (beams) psi						

Plant No. \qquad Silvana

Agency Use Only (Check appropirate Box)

DOT Form 350-040 EF Revised 6/06

Mix Design No.
Plant No. \qquad
Aggregate Information

Concrete Aggregates	Component 1	$\begin{array}{\|c} \hline \text { Component } \\ 2 \end{array}$	$\begin{gathered} \text { Component } \\ 3 \end{gathered}$	Component 4	Component 5	Combined Gradation
WSDOT Pit No.	D-342	D-342	D-342	D-342		
WSDOT ASR 14-day Results (\%) ${ }^{\text {b }}$	\square Yes $\square_{\text {No }}$	\square Yes $\square_{\text {No }}$	\square Yes $\mathrm{X}^{\text {No }}$	\square Yes \boxtimes No	\square Yes \square No	
Grading ${ }^{\text {c }}$	No. 57	No. 8	Class 2	No. 4		
Percent of Total Aggregate	48	5	39	8		100\%
Specific Gravity	2.69	2.69	2.64	2.69		
Lbs/cy (ssd)	1476	170	1202	247		

Percent Passing

2 inch	100	100	100	100		
$1-1 / 2$ inch	100	100	100	100		
1 inch	100	100	100	17.2		
$3 / 4$ inch	88.06	100	100	2.6		
$1 / 2$ inch	36.15	100.	100			
$3 / 8$ inch	11.07	85.79	100	.9		
No. 4	0.67	12.41	100			
No. 8	0	0.62	90.17			
No. 16	0	0.25	66.03			
No. 30	0	0	39.48			
No. 50	0	0	19.31			
No. 100	0	0	7.76			
No. 200	0	0	1.72	.1		

Fineness Modulus: 2.70 (Required for Class 2 Sand)
ASR Mitigation Method Proposed ${ }^{\text {b }}$: None Required

Notes:

a Required for Class 4000D and 4000P mixes.
b Alkali Silica Reactivity Mitigation is required for sources with expansions over 0.20% - Incidate method for ASR mitigation. For expansion of $0.21 \%-0.45 \%$, acceptable mitigation can be the use of low alkali cement or 25% type F fly ash.
Any other proposed mitigation method or for pits with greater than 0.45% expansion, proof of mitigating measure, either ASTM C1260 / AASHTO T303 test results must be attached. If ASTM C 1293 testing has been submitted indicating 1 -year expansion of 0.04% or less, mitigation is not required.
c AASHTO No. 467, 57, 67, 7, 8; WSDOT Class 1 , Class 2; or combined gradation. See Standard Specification 9-03.1.
d Required for Cement Concrete Pavements.
e Attach test results indicating conformance to Standard Specification 9-25.1.
f Actual Average Strength as determined from testing or estimated from ACl 211
DOT Form 350-040 EF
Revised 6/06

Modulus of Elasticity c-469

4,785,321 psi

ASTM C-672 Scaling Resistance of Concrete Surfaces Exposed to Deicing Chemicals

AASHTO T-160 Drying Shrinkage

Micro Strain: 310
WSDOT Requirements : Less than 320

AASHTO T-227 Rapid Chloride Ion Permeability

Result: $\frac{\text { Days }}{56} \frac{\text { Coulumbs }}{1705} \quad$ WSDOT Requirements

Rout shogun
Rob Shogren, P.E, Ph.D.
Technical Service Engineer
Lafarge North America

Bridge \#	9/134	Bridge Name		Pilchuck Creek		Structure ID 00	0018363A
Contract \#	8383	Region	NW	Project Engineer	Dave Crisman	Performance Deck Concrete?	Yes
Contractor	Granite Construction			Concrete Supplier	Stanwood Redi-Mix	Deck Placement 11/27/13, 12/11	\& 1/14/14
Bridge D	cription	3-Span (1	220' /), 3-Steel Plate G	ers (560' bridge lengt	es (36' wide roadway)	

$$
\begin{aligned}
& \text { L = length between diaphragms (or length of "bay") } \\
& \text { S = girder spacing }
\end{aligned}
$$

$$
\mathrm{N}_{100}=\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse crack spaced at } 2 \mathrm{ft} \text { on center) }
$$

$$
\mathrm{N}_{\mathrm{cr}}=\text { number of leaching cracks counted during visual inspection }
$$

$$
\%=\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) }
$$

							$\text { Max. }=45 \%$	
Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	N_{cr}	N_{100}	\%
1	1	A	B	18.61	13.00	0	9	0\%
1	1	B	C	18.61	13.00	0	9	0\%
1	2	A	B	18.61	13.00	0	9	0\%
1	2	B	C	18.61	13.00	0	9	0\%
1	3	A	B	18.61	13.00	0	9	0\%
1	3	B	C	18.61	13.00	0	9	0\%
1	4	A	B	18.61	13.00	0	9	0\%
1	4	B	C	18.61	13.00	3	9	35\%
1	5	A	B	18.61	13.00	3	9	35\%
1	5	B	C	18.61	13.00	4	9	45\%
1	6	A	B	18.61	13.00	1	9	10\%
1	6	B	C	18.61	13.00	2	9	20\%
1	7	A	B	18.61	13.00	0	9	0\%
1	7	B	C	18.61	13.00	0	9	0\%
1	8	A	B	18.61	13.00	0	9	0\%
1	8	B	C	18.61	13.00	0	9	0\%
1	9	A	B	18.61	13.00	0	9	0\%
1	9	B	C	18.61	13.00	1	9	10\%
2	1	A	B	18.33	13.00	1	9	10\%
2	1	B	C	18.33	13.00	1	9	10\%
2	2	A	B	18.33	13.00	0	9	0\%
2	2	B	C	18.33	13.00	1	9	10\%
2	3	A	B	18.33	13.00	1	9	10\%
2	3	B	C	18.33	13.00	2	9	20\%
2	4	A	B	18.33	13.00	0	9	0\%
2	4	B	C	18.33	13.00	0	9	0\%
2	5	A	B	18.33	13.00	0	9	0\%
2	5	B	C	18.33	13.00	0	9	0\%
2	6	A	B	18.33	13.00	0	9	0\%
2	6	B	C	18.33	13.00	0	9	0\%
2	7	A	B	18.33	13.00	0	9	0\%
2	7	B	C	18.33	13.00	0	9	0\%
2	8	A	B	18.33	13.00	0	9	0\%
2	8	B	C	18.33	13.00	0	9	0\%
2	9	A	B	18.33	13.00	0	9	0\%
2	9	B	C	18.33	13.00	0	9	0\%
2	10	A	B	18.33	13.00	0	9	0\%
2	10	B	C	18.33	13.00	0	9	0\%
2	11	A	B	18.33	13.00	0	9	0\%
2	11	B	C	18.33	13.00	0	9	0\%
2	12	A	B	18.33	13.00	1	9	10\%

$\begin{array}{rr}\text { Bridge \# } & 9 / 134 \\ \text { Contract \# } & 8383\end{array}$
Bridge Name
Pilchuck Creek
Structure ID \qquad 0018363A
Contract \# 8383 Region NW

Contractor \qquad | Project Engineer | Dave Crisman |
| ---: | :--- |
| Concrete Supplier | Stanwood Redi-Mix | Performance Deck Concrete? Yes Bridge Description 3-Span (170' / 220' / 170'), 3-Steel Plate Girders (560' bridge length), 2-Lanes (36' wide roadway)

$$
\begin{aligned}
& \mathrm{L}=\text { length between diaphragms (or length of "bay") } \\
& \mathrm{S}=\text { girder spacing }
\end{aligned}
$$

$$
\mathrm{N}_{100}=\text { number of cracks equal to get } 100 \% \text { cracking severity }=\mathrm{L} / 2 \mathrm{ft} \text { (transverse crack spaced at } 2 \mathrm{ft} \text { on center) }
$$

$$
\begin{aligned}
\mathrm{N}_{\mathrm{cr}} & =\text { number of leaching cracks counted during visual inspection } \\
\% & =\text { cracking severity percentage }=\mathrm{N}_{\mathrm{cr}} / \mathrm{N}_{100} \text { (rounded to the nearest 5\%) }
\end{aligned}
$$

Avg. $=7 \%$

Span	Bay	Gir. Lt.	Gir Rt.	L (ft)	S (ft)	$\mathrm{N}_{\text {cr }}$	N_{100}	$\%$
2	12	B	C	18.33	13.00	3	9	35%
3	1	A	B	18.61	13.00	1	9	10%
3	1	B	C	18.61	13.00	2	9	20%
3	2	A	B	18.61	13.00	0	9	0%
3	2	B	C	18.61	13.00	1	9	10%
3	3	A	B	18.61	13.00	1	9	10%
3	3	B	C	18.61	13.00	0	9	0%
3	4	A	B	18.61	13.00	1	9	10%
3	4	B	C	18.61	13.00	3	9	35%
3	5	A	B	18.61	13.00	2	9	20%
3	5	B	C	18.61	13.00	4	9	45%
3	6	A	B	18.61	13.00	0	9	0%
3	6	B	C	18.61	13.00	1	9	10%
3	7	A	B	18.61	13.00	0	9	0%
3	7	B	C	18.61	13.00	0	9	0%
3	8	A	B	18.61	13.00	0	9	0%
3	8	B	C	18.61	13.00	0	9	0%
3	9	A	B	18.61	13.00	0	9	0%
3	9	B	C	18.61	13.00	0	9	0%

CRACKING INTENSITY ~ BRIDGE 9/134
100\% = CRACK EVERY 2 FT.

BRIDGE NUMBER	$9 / 134$
BRIDGE NAME	PILCHUCK CREEK
INSPECTION DATE	5/22/2015
DECK CONCRETE	PERFORMANCE BASED

[^0]:
 expert oplnlon By provdiling these test resuls to you, Ash Grove make no express or implied warranties of any kind concerning the resuls or condusions of tis materlatiathg if you are requre such information, you should consult an independent commerolal leating laboratory Any unauthorized use, disclosure,

[^1]: 100% = CRACK EVERY 2 FT.

